| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supsnti | Unicode version | ||
| Description: The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| supsnti.ti |
|
| supsnti.b |
|
| Ref | Expression |
|---|---|
| supsnti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supsnti.ti |
. 2
| |
| 2 | supsnti.b |
. 2
| |
| 3 | snidg 3662 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | eqid 2205 |
. . . . . 6
| |
| 6 | 1 | ralrimivva 2588 |
. . . . . . 7
|
| 7 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 8 | breq1 4047 |
. . . . . . . . . . . 12
| |
| 9 | 8 | notbid 669 |
. . . . . . . . . . 11
|
| 10 | breq2 4048 |
. . . . . . . . . . . 12
| |
| 11 | 10 | notbid 669 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . . . 10
|
| 13 | 7, 12 | bibi12d 235 |
. . . . . . . . 9
|
| 14 | eqeq2 2215 |
. . . . . . . . . 10
| |
| 15 | breq2 4048 |
. . . . . . . . . . . 12
| |
| 16 | 15 | notbid 669 |
. . . . . . . . . . 11
|
| 17 | breq1 4047 |
. . . . . . . . . . . 12
| |
| 18 | 17 | notbid 669 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | anbi12d 473 |
. . . . . . . . . 10
|
| 20 | 14, 19 | bibi12d 235 |
. . . . . . . . 9
|
| 21 | 13, 20 | rspc2v 2890 |
. . . . . . . 8
|
| 22 | 2, 2, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 6, 22 | mpd 13 |
. . . . . 6
|
| 24 | 5, 23 | mpbii 148 |
. . . . 5
|
| 25 | 24 | simpld 112 |
. . . 4
|
| 26 | 25 | adantr 276 |
. . 3
|
| 27 | elsni 3651 |
. . . . . 6
| |
| 28 | 27 | breq2d 4056 |
. . . . 5
|
| 29 | 28 | notbid 669 |
. . . 4
|
| 30 | 29 | adantl 277 |
. . 3
|
| 31 | 26, 30 | mpbird 167 |
. 2
|
| 32 | 1, 2, 4, 31 | supmaxti 7106 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-riota 5899 df-sup 7086 |
| This theorem is referenced by: infsnti 7132 |
| Copyright terms: Public domain | W3C validator |