ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supsnti Unicode version

Theorem supsnti 6970
Description: The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
Hypotheses
Ref Expression
supsnti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supsnti.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
supsnti  |-  ( ph  ->  sup ( { B } ,  A ,  R )  =  B )
Distinct variable groups:    u, A, v   
u, B, v    u, R, v    ph, u, v

Proof of Theorem supsnti
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 supsnti.ti . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 supsnti.b . 2  |-  ( ph  ->  B  e.  A )
3 snidg 3605 . . 3  |-  ( B  e.  A  ->  B  e.  { B } )
42, 3syl 14 . 2  |-  ( ph  ->  B  e.  { B } )
5 eqid 2165 . . . . . 6  |-  B  =  B
61ralrimivva 2548 . . . . . . 7  |-  ( ph  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )
7 eqeq1 2172 . . . . . . . . . 10  |-  ( u  =  B  ->  (
u  =  v  <->  B  =  v ) )
8 breq1 3985 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
u R v  <->  B R
v ) )
98notbid 657 . . . . . . . . . . 11  |-  ( u  =  B  ->  ( -.  u R v  <->  -.  B R v ) )
10 breq2 3986 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
v R u  <->  v R B ) )
1110notbid 657 . . . . . . . . . . 11  |-  ( u  =  B  ->  ( -.  v R u  <->  -.  v R B ) )
129, 11anbi12d 465 . . . . . . . . . 10  |-  ( u  =  B  ->  (
( -.  u R v  /\  -.  v R u )  <->  ( -.  B R v  /\  -.  v R B ) ) )
137, 12bibi12d 234 . . . . . . . . 9  |-  ( u  =  B  ->  (
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) )  <-> 
( B  =  v  <-> 
( -.  B R v  /\  -.  v R B ) ) ) )
14 eqeq2 2175 . . . . . . . . . 10  |-  ( v  =  B  ->  ( B  =  v  <->  B  =  B ) )
15 breq2 3986 . . . . . . . . . . . 12  |-  ( v  =  B  ->  ( B R v  <->  B R B ) )
1615notbid 657 . . . . . . . . . . 11  |-  ( v  =  B  ->  ( -.  B R v  <->  -.  B R B ) )
17 breq1 3985 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
v R B  <->  B R B ) )
1817notbid 657 . . . . . . . . . . 11  |-  ( v  =  B  ->  ( -.  v R B  <->  -.  B R B ) )
1916, 18anbi12d 465 . . . . . . . . . 10  |-  ( v  =  B  ->  (
( -.  B R v  /\  -.  v R B )  <->  ( -.  B R B  /\  -.  B R B ) ) )
2014, 19bibi12d 234 . . . . . . . . 9  |-  ( v  =  B  ->  (
( B  =  v  <-> 
( -.  B R v  /\  -.  v R B ) )  <->  ( B  =  B  <->  ( -.  B R B  /\  -.  B R B ) ) ) )
2113, 20rspc2v 2843 . . . . . . . 8  |-  ( ( B  e.  A  /\  B  e.  A )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  ->  ( B  =  B  <->  ( -.  B R B  /\  -.  B R B ) ) ) )
222, 2, 21syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  ->  ( B  =  B  <->  ( -.  B R B  /\  -.  B R B ) ) ) )
236, 22mpd 13 . . . . . 6  |-  ( ph  ->  ( B  =  B  <-> 
( -.  B R B  /\  -.  B R B ) ) )
245, 23mpbii 147 . . . . 5  |-  ( ph  ->  ( -.  B R B  /\  -.  B R B ) )
2524simpld 111 . . . 4  |-  ( ph  ->  -.  B R B )
2625adantr 274 . . 3  |-  ( (
ph  /\  x  e.  { B } )  ->  -.  B R B )
27 elsni 3594 . . . . . 6  |-  ( x  e.  { B }  ->  x  =  B )
2827breq2d 3994 . . . . 5  |-  ( x  e.  { B }  ->  ( B R x  <-> 
B R B ) )
2928notbid 657 . . . 4  |-  ( x  e.  { B }  ->  ( -.  B R x  <->  -.  B R B ) )
3029adantl 275 . . 3  |-  ( (
ph  /\  x  e.  { B } )  -> 
( -.  B R x  <->  -.  B R B ) )
3126, 30mpbird 166 . 2  |-  ( (
ph  /\  x  e.  { B } )  ->  -.  B R x )
321, 2, 4, 31supmaxti 6969 1  |-  ( ph  ->  sup ( { B } ,  A ,  R )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   {csn 3576   class class class wbr 3982   supcsup 6947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-riota 5798  df-sup 6949
This theorem is referenced by:  infsnti  6995
  Copyright terms: Public domain W3C validator