| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supsnti | Unicode version | ||
| Description: The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| supsnti.ti |
|
| supsnti.b |
|
| Ref | Expression |
|---|---|
| supsnti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supsnti.ti |
. 2
| |
| 2 | supsnti.b |
. 2
| |
| 3 | snidg 3651 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | eqid 2196 |
. . . . . 6
| |
| 6 | 1 | ralrimivva 2579 |
. . . . . . 7
|
| 7 | eqeq1 2203 |
. . . . . . . . . 10
| |
| 8 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 9 | 8 | notbid 668 |
. . . . . . . . . . 11
|
| 10 | breq2 4037 |
. . . . . . . . . . . 12
| |
| 11 | 10 | notbid 668 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . . . 10
|
| 13 | 7, 12 | bibi12d 235 |
. . . . . . . . 9
|
| 14 | eqeq2 2206 |
. . . . . . . . . 10
| |
| 15 | breq2 4037 |
. . . . . . . . . . . 12
| |
| 16 | 15 | notbid 668 |
. . . . . . . . . . 11
|
| 17 | breq1 4036 |
. . . . . . . . . . . 12
| |
| 18 | 17 | notbid 668 |
. . . . . . . . . . 11
|
| 19 | 16, 18 | anbi12d 473 |
. . . . . . . . . 10
|
| 20 | 14, 19 | bibi12d 235 |
. . . . . . . . 9
|
| 21 | 13, 20 | rspc2v 2881 |
. . . . . . . 8
|
| 22 | 2, 2, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 6, 22 | mpd 13 |
. . . . . 6
|
| 24 | 5, 23 | mpbii 148 |
. . . . 5
|
| 25 | 24 | simpld 112 |
. . . 4
|
| 26 | 25 | adantr 276 |
. . 3
|
| 27 | elsni 3640 |
. . . . . 6
| |
| 28 | 27 | breq2d 4045 |
. . . . 5
|
| 29 | 28 | notbid 668 |
. . . 4
|
| 30 | 29 | adantl 277 |
. . 3
|
| 31 | 26, 30 | mpbird 167 |
. 2
|
| 32 | 1, 2, 4, 31 | supmaxti 7070 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-riota 5877 df-sup 7050 |
| This theorem is referenced by: infsnti 7096 |
| Copyright terms: Public domain | W3C validator |