| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) | 
| Ref | Expression | 
|---|---|
| 3bitr4d.1 | 
 | 
| 3bitr4d.2 | 
 | 
| 3bitr4d.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3bitr4rd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr4d.3 | 
. . 3
 | |
| 2 | 3bitr4d.1 | 
. . 3
 | |
| 3 | 1, 2 | bitr4d 191 | 
. 2
 | 
| 4 | 3bitr4d.2 | 
. 2
 | |
| 5 | 3, 4 | bitr4d 191 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: inimasn 5087 dmfco 5629 omp1eomlem 7160 ltanqg 7467 genpassl 7591 genpassu 7592 ltexprlemloc 7674 caucvgprlemcanl 7711 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 caucvgprprlemaddq 7775 apneg 8638 lemuldiv 8908 msq11 8929 negiso 8982 avglt2 9231 xleaddadd 9962 iooshf 10027 qtri3or 10330 sq11ap 10799 hashen 10876 fihashdom 10895 cjap 11071 sqrt11ap 11203 mingeb 11407 xrnegiso 11427 clim2c 11449 climabs0 11472 absefib 11936 efieq1re 11937 nndivides 11962 oddnn02np1 12045 oddge22np1 12046 evennn02n 12047 evennn2n 12048 halfleoddlt 12059 pc2dvds 12499 pcmpt 12512 issubm 13104 cnntr 14461 cndis 14477 cnpdis 14478 lmres 14484 txhmeo 14555 blininf 14660 cncfmet 14828 | 
| Copyright terms: Public domain | W3C validator |