| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 |
. . 3
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr4d.2 |
. 2
| |
| 5 | 3, 4 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5119 dmfco 5670 omp1eomlem 7222 ltanqg 7548 genpassl 7672 genpassu 7673 ltexprlemloc 7755 caucvgprlemcanl 7792 cauappcvgprlemladdrl 7805 caucvgprlemladdrl 7826 caucvgprprlemaddq 7856 apneg 8719 lemuldiv 8989 msq11 9010 negiso 9063 avglt2 9312 xleaddadd 10044 iooshf 10109 qtri3or 10420 sq11ap 10889 hashen 10966 fihashdom 10985 cjap 11332 sqrt11ap 11464 mingeb 11668 xrnegiso 11688 clim2c 11710 climabs0 11733 absefib 12197 efieq1re 12198 nndivides 12223 oddnn02np1 12306 oddge22np1 12307 evennn02n 12308 evennn2n 12309 halfleoddlt 12320 pc2dvds 12768 pcmpt 12781 issubm 13419 cnntr 14812 cndis 14828 cnpdis 14829 lmres 14835 txhmeo 14906 blininf 15011 cncfmet 15179 |
| Copyright terms: Public domain | W3C validator |