| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 |
. . 3
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr4d.2 |
. 2
| |
| 5 | 3, 4 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5101 dmfco 5649 omp1eomlem 7198 ltanqg 7515 genpassl 7639 genpassu 7640 ltexprlemloc 7722 caucvgprlemcanl 7759 cauappcvgprlemladdrl 7772 caucvgprlemladdrl 7793 caucvgprprlemaddq 7823 apneg 8686 lemuldiv 8956 msq11 8977 negiso 9030 avglt2 9279 xleaddadd 10011 iooshf 10076 qtri3or 10385 sq11ap 10854 hashen 10931 fihashdom 10950 cjap 11250 sqrt11ap 11382 mingeb 11586 xrnegiso 11606 clim2c 11628 climabs0 11651 absefib 12115 efieq1re 12116 nndivides 12141 oddnn02np1 12224 oddge22np1 12225 evennn02n 12226 evennn2n 12227 halfleoddlt 12238 pc2dvds 12686 pcmpt 12699 issubm 13337 cnntr 14730 cndis 14746 cnpdis 14747 lmres 14753 txhmeo 14824 blininf 14929 cncfmet 15097 |
| Copyright terms: Public domain | W3C validator |