![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4d 191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: inimasn 5058 dmfco 5597 omp1eomlem 7107 ltanqg 7413 genpassl 7537 genpassu 7538 ltexprlemloc 7620 caucvgprlemcanl 7657 cauappcvgprlemladdrl 7670 caucvgprlemladdrl 7691 caucvgprprlemaddq 7721 apneg 8582 lemuldiv 8852 msq11 8873 negiso 8926 avglt2 9172 xleaddadd 9901 iooshf 9966 qtri3or 10257 sq11ap 10702 hashen 10778 fihashdom 10797 cjap 10929 sqrt11ap 11061 mingeb 11264 xrnegiso 11284 clim2c 11306 climabs0 11329 absefib 11792 efieq1re 11793 nndivides 11818 oddnn02np1 11899 oddge22np1 11900 evennn02n 11901 evennn2n 11902 halfleoddlt 11913 pc2dvds 12343 pcmpt 12355 issubm 12885 cnntr 14021 cndis 14037 cnpdis 14038 lmres 14044 txhmeo 14115 blininf 14220 cncfmet 14375 |
Copyright terms: Public domain | W3C validator |