![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4d 191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: inimasn 5083 dmfco 5625 omp1eomlem 7153 ltanqg 7460 genpassl 7584 genpassu 7585 ltexprlemloc 7667 caucvgprlemcanl 7704 cauappcvgprlemladdrl 7717 caucvgprlemladdrl 7738 caucvgprprlemaddq 7768 apneg 8630 lemuldiv 8900 msq11 8921 negiso 8974 avglt2 9222 xleaddadd 9953 iooshf 10018 qtri3or 10310 sq11ap 10778 hashen 10855 fihashdom 10874 cjap 11050 sqrt11ap 11182 mingeb 11385 xrnegiso 11405 clim2c 11427 climabs0 11450 absefib 11914 efieq1re 11915 nndivides 11940 oddnn02np1 12021 oddge22np1 12022 evennn02n 12023 evennn2n 12024 halfleoddlt 12035 pc2dvds 12468 pcmpt 12481 issubm 13044 cnntr 14393 cndis 14409 cnpdis 14410 lmres 14416 txhmeo 14487 blininf 14592 cncfmet 14747 |
Copyright terms: Public domain | W3C validator |