| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 |
. . 3
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr4d.2 |
. 2
| |
| 5 | 3, 4 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5146 dmfco 5702 omp1eomlem 7261 ltanqg 7587 genpassl 7711 genpassu 7712 ltexprlemloc 7794 caucvgprlemcanl 7831 cauappcvgprlemladdrl 7844 caucvgprlemladdrl 7865 caucvgprprlemaddq 7895 apneg 8758 lemuldiv 9028 msq11 9049 negiso 9102 avglt2 9351 xleaddadd 10083 iooshf 10148 qtri3or 10460 sq11ap 10929 hashen 11006 fihashdom 11025 cjap 11417 sqrt11ap 11549 mingeb 11753 xrnegiso 11773 clim2c 11795 climabs0 11818 absefib 12282 efieq1re 12283 nndivides 12308 oddnn02np1 12391 oddge22np1 12392 evennn02n 12393 evennn2n 12394 halfleoddlt 12405 pc2dvds 12853 pcmpt 12866 issubm 13505 cnntr 14899 cndis 14915 cnpdis 14916 lmres 14922 txhmeo 14993 blininf 15098 cncfmet 15266 |
| Copyright terms: Public domain | W3C validator |