| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 |
|
| 3bitr4d.2 |
|
| 3bitr4d.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4rd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 |
. . 3
| |
| 2 | 3bitr4d.1 |
. . 3
| |
| 3 | 1, 2 | bitr4d 191 |
. 2
|
| 4 | 3bitr4d.2 |
. 2
| |
| 5 | 3, 4 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5100 dmfco 5647 omp1eomlem 7196 ltanqg 7513 genpassl 7637 genpassu 7638 ltexprlemloc 7720 caucvgprlemcanl 7757 cauappcvgprlemladdrl 7770 caucvgprlemladdrl 7791 caucvgprprlemaddq 7821 apneg 8684 lemuldiv 8954 msq11 8975 negiso 9028 avglt2 9277 xleaddadd 10009 iooshf 10074 qtri3or 10383 sq11ap 10852 hashen 10929 fihashdom 10948 cjap 11217 sqrt11ap 11349 mingeb 11553 xrnegiso 11573 clim2c 11595 climabs0 11618 absefib 12082 efieq1re 12083 nndivides 12108 oddnn02np1 12191 oddge22np1 12192 evennn02n 12193 evennn2n 12194 halfleoddlt 12205 pc2dvds 12653 pcmpt 12666 issubm 13304 cnntr 14697 cndis 14713 cnpdis 14714 lmres 14720 txhmeo 14791 blininf 14896 cncfmet 15064 |
| Copyright terms: Public domain | W3C validator |