![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4rd | Unicode version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4rd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitr4d 191 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3bitr4d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | bitr4d 191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: inimasn 5084 dmfco 5626 omp1eomlem 7155 ltanqg 7462 genpassl 7586 genpassu 7587 ltexprlemloc 7669 caucvgprlemcanl 7706 cauappcvgprlemladdrl 7719 caucvgprlemladdrl 7740 caucvgprprlemaddq 7770 apneg 8632 lemuldiv 8902 msq11 8923 negiso 8976 avglt2 9225 xleaddadd 9956 iooshf 10021 qtri3or 10313 sq11ap 10781 hashen 10858 fihashdom 10877 cjap 11053 sqrt11ap 11185 mingeb 11388 xrnegiso 11408 clim2c 11430 climabs0 11453 absefib 11917 efieq1re 11918 nndivides 11943 oddnn02np1 12024 oddge22np1 12025 evennn02n 12026 evennn2n 12027 halfleoddlt 12038 pc2dvds 12471 pcmpt 12484 issubm 13047 cnntr 14404 cndis 14420 cnpdis 14421 lmres 14427 txhmeo 14498 blininf 14603 cncfmet 14771 |
Copyright terms: Public domain | W3C validator |