ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvxp Unicode version

Theorem cnvxp 5085
Description: The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp  |-  `' ( A  X.  B )  =  ( B  X.  A )

Proof of Theorem cnvxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5068 . . 3  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }
2 ancom 266 . . . 4  |-  ( ( y  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  y  e.  A )
)
32opabbii 4097 . . 3  |-  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
41, 3eqtri 2214 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
5 df-xp 4666 . . 3  |-  ( A  X.  B )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
65cnveqi 4838 . 2  |-  `' ( A  X.  B )  =  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
7 df-xp 4666 . 2  |-  ( B  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  A ) }
84, 6, 73eqtr4i 2224 1  |-  `' ( A  X.  B )  =  ( B  X.  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {copab 4090    X. cxp 4658   `'ccnv 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668
This theorem is referenced by:  xp0  5086  rnxpm  5096  rnxpss  5098  dminxp  5111  imainrect  5112  tposfo  6326  tposf  6327  xpider  6662  xpcomf1o  6881  pw1nct  15563
  Copyright terms: Public domain W3C validator