ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropstrg Unicode version

Theorem grppropstrg 13094
Description: Generalize a specific 2-element group  L to show that any set  K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grppropstr.b  |-  ( Base `  K )  =  B
grppropstr.p  |-  ( +g  `  K )  =  .+
grppropstr.l  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
Assertion
Ref Expression
grppropstrg  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )

Proof of Theorem grppropstrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropstr.b . . . . 5  |-  ( Base `  K )  =  B
2 basfn 12679 . . . . . 6  |-  Base  Fn  _V
3 elex 2771 . . . . . 6  |-  ( K  e.  V  ->  K  e.  _V )
4 funfvex 5572 . . . . . . 7  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
54funfni 5355 . . . . . 6  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
62, 3, 5sylancr 414 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  e. 
_V )
71, 6eqeltrrid 2281 . . . 4  |-  ( K  e.  V  ->  B  e.  _V )
8 grppropstr.p . . . . 5  |-  ( +g  `  K )  =  .+
9 plusgslid 12733 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
109slotex 12648 . . . . 5  |-  ( K  e.  V  ->  ( +g  `  K )  e. 
_V )
118, 10eqeltrrid 2281 . . . 4  |-  ( K  e.  V  ->  .+  e.  _V )
12 grppropstr.l . . . . 5  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
1312grpbaseg 12747 . . . 4  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  B  =  ( Base `  L ) )
147, 11, 13syl2anc 411 . . 3  |-  ( K  e.  V  ->  B  =  ( Base `  L
) )
151, 14eqtrid 2238 . . 3  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  L
) )
1614, 15eqtr4d 2229 . 2  |-  ( K  e.  V  ->  B  =  ( Base `  K
) )
1712grpplusgg 12748 . . . . 5  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  .+  =  ( +g  `  L ) )
187, 11, 17syl2anc 411 . . . 4  |-  ( K  e.  V  ->  .+  =  ( +g  `  L ) )
198, 18eqtrid 2238 . . 3  |-  ( K  e.  V  ->  ( +g  `  K )  =  ( +g  `  L
) )
2019oveqdr 5947 . 2  |-  ( ( K  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
2116, 14, 20grppropd 13092 1  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {cpr 3620   <.cop 3622    Fn wfn 5250   ` cfv 5255   ndxcnx 12618   Basecbs 12621   +g cplusg 12698   Grpcgrp 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078
This theorem is referenced by:  ring1  13558
  Copyright terms: Public domain W3C validator