ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropstrg Unicode version

Theorem grppropstrg 13221
Description: Generalize a specific 2-element group  L to show that any set  K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grppropstr.b  |-  ( Base `  K )  =  B
grppropstr.p  |-  ( +g  `  K )  =  .+
grppropstr.l  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
Assertion
Ref Expression
grppropstrg  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )

Proof of Theorem grppropstrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropstr.b . . . . 5  |-  ( Base `  K )  =  B
2 basfn 12761 . . . . . 6  |-  Base  Fn  _V
3 elex 2774 . . . . . 6  |-  ( K  e.  V  ->  K  e.  _V )
4 funfvex 5578 . . . . . . 7  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
54funfni 5361 . . . . . 6  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
62, 3, 5sylancr 414 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  e. 
_V )
71, 6eqeltrrid 2284 . . . 4  |-  ( K  e.  V  ->  B  e.  _V )
8 grppropstr.p . . . . 5  |-  ( +g  `  K )  =  .+
9 plusgslid 12815 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
109slotex 12730 . . . . 5  |-  ( K  e.  V  ->  ( +g  `  K )  e. 
_V )
118, 10eqeltrrid 2284 . . . 4  |-  ( K  e.  V  ->  .+  e.  _V )
12 grppropstr.l . . . . 5  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
1312grpbaseg 12829 . . . 4  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  B  =  ( Base `  L ) )
147, 11, 13syl2anc 411 . . 3  |-  ( K  e.  V  ->  B  =  ( Base `  L
) )
151, 14eqtrid 2241 . . 3  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  L
) )
1614, 15eqtr4d 2232 . 2  |-  ( K  e.  V  ->  B  =  ( Base `  K
) )
1712grpplusgg 12830 . . . . 5  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  .+  =  ( +g  `  L ) )
187, 11, 17syl2anc 411 . . . 4  |-  ( K  e.  V  ->  .+  =  ( +g  `  L ) )
198, 18eqtrid 2241 . . 3  |-  ( K  e.  V  ->  ( +g  `  K )  =  ( +g  `  L
) )
2019oveqdr 5953 . 2  |-  ( ( K  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
2116, 14, 20grppropd 13219 1  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   {cpr 3624   <.cop 3626    Fn wfn 5254   ` cfv 5259   ndxcnx 12700   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by:  ring1  13691
  Copyright terms: Public domain W3C validator