Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grppropstrg | Unicode version |
Description: Generalize a specific 2-element group to show that any set with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grppropstr.b | |
grppropstr.p | |
grppropstr.l |
Ref | Expression |
---|---|
grppropstrg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropstr.b | . . . . 5 | |
2 | basfn 12484 | . . . . . 6 | |
3 | elex 2746 | . . . . . 6 | |
4 | funfvex 5524 | . . . . . . 7 | |
5 | 4 | funfni 5308 | . . . . . 6 |
6 | 2, 3, 5 | sylancr 414 | . . . . 5 |
7 | 1, 6 | eqeltrrid 2263 | . . . 4 |
8 | grppropstr.p | . . . . 5 | |
9 | plusgslid 12524 | . . . . . 6 Slot | |
10 | 9 | slotex 12454 | . . . . 5 |
11 | 8, 10 | eqeltrrid 2263 | . . . 4 |
12 | grppropstr.l | . . . . 5 | |
13 | 12 | grpbaseg 12537 | . . . 4 |
14 | 7, 11, 13 | syl2anc 411 | . . 3 |
15 | 1, 14 | eqtrid 2220 | . . 3 |
16 | 14, 15 | eqtr4d 2211 | . 2 |
17 | 12 | grpplusgg 12538 | . . . . 5 |
18 | 7, 11, 17 | syl2anc 411 | . . . 4 |
19 | 8, 18 | eqtrid 2220 | . . 3 |
20 | 19 | oveqdr 5893 | . 2 |
21 | 16, 14, 20 | grppropd 12753 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cvv 2735 cpr 3590 cop 3592 wfn 5203 cfv 5208 cnx 12424 cbs 12427 cplusg 12491 cgrp 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 |
This theorem is referenced by: ring1 13028 |
Copyright terms: Public domain | W3C validator |