ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropstrg Unicode version

Theorem grppropstrg 12755
Description: Generalize a specific 2-element group  L to show that any set  K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grppropstr.b  |-  ( Base `  K )  =  B
grppropstr.p  |-  ( +g  `  K )  =  .+
grppropstr.l  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
Assertion
Ref Expression
grppropstrg  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )

Proof of Theorem grppropstrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropstr.b . . . . 5  |-  ( Base `  K )  =  B
2 basfn 12484 . . . . . 6  |-  Base  Fn  _V
3 elex 2746 . . . . . 6  |-  ( K  e.  V  ->  K  e.  _V )
4 funfvex 5524 . . . . . . 7  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
54funfni 5308 . . . . . 6  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
62, 3, 5sylancr 414 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  e. 
_V )
71, 6eqeltrrid 2263 . . . 4  |-  ( K  e.  V  ->  B  e.  _V )
8 grppropstr.p . . . . 5  |-  ( +g  `  K )  =  .+
9 plusgslid 12524 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
109slotex 12454 . . . . 5  |-  ( K  e.  V  ->  ( +g  `  K )  e. 
_V )
118, 10eqeltrrid 2263 . . . 4  |-  ( K  e.  V  ->  .+  e.  _V )
12 grppropstr.l . . . . 5  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
1312grpbaseg 12537 . . . 4  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  B  =  ( Base `  L ) )
147, 11, 13syl2anc 411 . . 3  |-  ( K  e.  V  ->  B  =  ( Base `  L
) )
151, 14eqtrid 2220 . . 3  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  L
) )
1614, 15eqtr4d 2211 . 2  |-  ( K  e.  V  ->  B  =  ( Base `  K
) )
1712grpplusgg 12538 . . . . 5  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  .+  =  ( +g  `  L ) )
187, 11, 17syl2anc 411 . . . 4  |-  ( K  e.  V  ->  .+  =  ( +g  `  L ) )
198, 18eqtrid 2220 . . 3  |-  ( K  e.  V  ->  ( +g  `  K )  =  ( +g  `  L
) )
2019oveqdr 5893 . 2  |-  ( ( K  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
2116, 14, 20grppropd 12753 1  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735   {cpr 3590   <.cop 3592    Fn wfn 5203   ` cfv 5208   ndxcnx 12424   Basecbs 12427   +g cplusg 12491   Grpcgrp 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-grp 12740
This theorem is referenced by:  ring1  13028
  Copyright terms: Public domain W3C validator