ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropstrg Unicode version

Theorem grppropstrg 13426
Description: Generalize a specific 2-element group  L to show that any set  K with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grppropstr.b  |-  ( Base `  K )  =  B
grppropstr.p  |-  ( +g  `  K )  =  .+
grppropstr.l  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
Assertion
Ref Expression
grppropstrg  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )

Proof of Theorem grppropstrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropstr.b . . . . 5  |-  ( Base `  K )  =  B
2 basfn 12965 . . . . . 6  |-  Base  Fn  _V
3 elex 2785 . . . . . 6  |-  ( K  e.  V  ->  K  e.  _V )
4 funfvex 5606 . . . . . . 7  |-  ( ( Fun  Base  /\  K  e. 
dom  Base )  ->  ( Base `  K )  e. 
_V )
54funfni 5385 . . . . . 6  |-  ( (
Base  Fn  _V  /\  K  e.  _V )  ->  ( Base `  K )  e. 
_V )
62, 3, 5sylancr 414 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  e. 
_V )
71, 6eqeltrrid 2294 . . . 4  |-  ( K  e.  V  ->  B  e.  _V )
8 grppropstr.p . . . . 5  |-  ( +g  `  K )  =  .+
9 plusgslid 13019 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
109slotex 12934 . . . . 5  |-  ( K  e.  V  ->  ( +g  `  K )  e. 
_V )
118, 10eqeltrrid 2294 . . . 4  |-  ( K  e.  V  ->  .+  e.  _V )
12 grppropstr.l . . . . 5  |-  L  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
1312grpbaseg 13034 . . . 4  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  B  =  ( Base `  L ) )
147, 11, 13syl2anc 411 . . 3  |-  ( K  e.  V  ->  B  =  ( Base `  L
) )
151, 14eqtrid 2251 . . 3  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  L
) )
1614, 15eqtr4d 2242 . 2  |-  ( K  e.  V  ->  B  =  ( Base `  K
) )
1712grpplusgg 13035 . . . . 5  |-  ( ( B  e.  _V  /\  .+  e.  _V )  ->  .+  =  ( +g  `  L ) )
187, 11, 17syl2anc 411 . . . 4  |-  ( K  e.  V  ->  .+  =  ( +g  `  L ) )
198, 18eqtrid 2251 . . 3  |-  ( K  e.  V  ->  ( +g  `  K )  =  ( +g  `  L
) )
2019oveqdr 5985 . 2  |-  ( ( K  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
2116, 14, 20grppropd 13424 1  |-  ( K  e.  V  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773   {cpr 3639   <.cop 3641    Fn wfn 5275   ` cfv 5280   ndxcnx 12904   Basecbs 12907   +g cplusg 12984   Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410
This theorem is referenced by:  ring1  13896
  Copyright terms: Public domain W3C validator