| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunxpf | GIF version | ||
| Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
| iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
| iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
| iunxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2342 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
| 3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 4 | 3 | nfcri 2342 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
| 5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 6 | 5 | nfcri 2342 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
| 7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | |
| 8 | 7 | eleq2d 2275 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
| 9 | 2, 4, 6, 8 | rexxpf 4825 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 10 | eliun 3931 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
| 11 | eliun 3931 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
| 12 | eliun 3931 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
| 13 | 12 | rexbii 2513 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 14 | 11, 13 | bitri 184 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 15 | 9, 10, 14 | 3bitr4i 212 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
| 16 | 15 | eqriv 2202 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Ⅎwnfc 2335 ∃wrex 2485 〈cop 3636 ∪ ciun 3927 × cxp 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-iun 3929 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: dfmpo 6309 |
| Copyright terms: Public domain | W3C validator |