| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunxpf | GIF version | ||
| Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
| iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
| iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
| iunxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 2 | 1 | nfcri 2344 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
| 3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 4 | 3 | nfcri 2344 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
| 5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 6 | 5 | nfcri 2344 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
| 7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | |
| 8 | 7 | eleq2d 2277 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
| 9 | 2, 4, 6, 8 | rexxpf 4843 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 10 | eliun 3945 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
| 11 | eliun 3945 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
| 12 | eliun 3945 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
| 13 | 12 | rexbii 2515 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 14 | 11, 13 | bitri 184 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
| 15 | 9, 10, 14 | 3bitr4i 212 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
| 16 | 15 | eqriv 2204 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Ⅎwnfc 2337 ∃wrex 2487 〈cop 3646 ∪ ciun 3941 × cxp 4691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: dfmpo 6332 |
| Copyright terms: Public domain | W3C validator |