ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpf GIF version

Theorem iunxpf 4752
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1 𝑦𝐶
iunxpf.2 𝑧𝐶
iunxpf.3 𝑥𝐷
iunxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
iunxpf 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem iunxpf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5 𝑦𝐶
21nfcri 2302 . . . 4 𝑦 𝑤𝐶
3 iunxpf.2 . . . . 5 𝑧𝐶
43nfcri 2302 . . . 4 𝑧 𝑤𝐶
5 iunxpf.3 . . . . 5 𝑥𝐷
65nfcri 2302 . . . 4 𝑥 𝑤𝐷
7 iunxpf.4 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
87eleq2d 2236 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑤𝐶𝑤𝐷))
92, 4, 6, 8rexxpf 4751 . . 3 (∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
10 eliun 3870 . . 3 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶)
11 eliun 3870 . . . 4 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴 𝑤 𝑧𝐵 𝐷)
12 eliun 3870 . . . . 5 (𝑤 𝑧𝐵 𝐷 ↔ ∃𝑧𝐵 𝑤𝐷)
1312rexbii 2473 . . . 4 (∃𝑦𝐴 𝑤 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
1411, 13bitri 183 . . 3 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
159, 10, 143bitr4i 211 . 2 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶𝑤 𝑦𝐴 𝑧𝐵 𝐷)
1615eqriv 2162 1 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wnfc 2295  wrex 2445  cop 3579   ciun 3866   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  dfmpo  6191
  Copyright terms: Public domain W3C validator