Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunxpf | GIF version |
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
iunxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
4 | 3 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
6 | 5 | nfcri 2306 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | |
8 | 7 | eleq2d 2240 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
9 | 2, 4, 6, 8 | rexxpf 4756 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
10 | eliun 3875 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
11 | eliun 3875 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
12 | eliun 3875 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
13 | 12 | rexbii 2477 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
14 | 11, 13 | bitri 183 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
15 | 9, 10, 14 | 3bitr4i 211 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
16 | 15 | eqriv 2167 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Ⅎwnfc 2299 ∃wrex 2449 〈cop 3584 ∪ ciun 3871 × cxp 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-iun 3873 df-opab 4049 df-xp 4615 df-rel 4616 |
This theorem is referenced by: dfmpo 6199 |
Copyright terms: Public domain | W3C validator |