![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunxpf | GIF version |
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
iunxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2223 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
4 | 3 | nfcri 2223 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
6 | 5 | nfcri 2223 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | |
8 | 7 | eleq2d 2158 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
9 | 2, 4, 6, 8 | rexxpf 4596 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
10 | eliun 3740 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
11 | eliun 3740 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
12 | eliun 3740 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
13 | 12 | rexbii 2386 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
14 | 11, 13 | bitri 183 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
15 | 9, 10, 14 | 3bitr4i 211 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
16 | 15 | eqriv 2086 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 Ⅎwnfc 2216 ∃wrex 2361 〈cop 3453 ∪ ciun 3736 × cxp 4450 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-sbc 2842 df-csb 2935 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-iun 3738 df-opab 3906 df-xp 4458 df-rel 4459 |
This theorem is referenced by: dfmpt2 6002 |
Copyright terms: Public domain | W3C validator |