ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1st Unicode version

Theorem cnmpt1st 14962
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
cnmpt1st  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Distinct variable groups:    x, y, ph    x, X, y    x, Y, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt1st
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fo1st 6303 . . . . . 6  |-  1st : _V -onto-> _V
2 fofn 5550 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . . 5  |-  1st  Fn  _V
4 ssv 3246 . . . . 5  |-  ( X  X.  Y )  C_  _V
5 fnssres 5436 . . . . 5  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
63, 4, 5mp2an 426 . . . 4  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
7 dffn5im 5679 . . . 4  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) ) )
86, 7ax-mp 5 . . 3  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) )
9 fvres 5651 . . . 4  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
109mpteq2ia 4170 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `  z ) )  =  ( z  e.  ( X  X.  Y ) 
|->  ( 1st `  z
) )
11 vex 2802 . . . . 5  |-  x  e. 
_V
12 vex 2802 . . . . 5  |-  y  e. 
_V
1311, 12op1std 6294 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
1413mpompt 6096 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( 1st `  z ) )  =  ( x  e.  X ,  y  e.  Y  |->  x )
158, 10, 143eqtri 2254 . 2  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( x  e.  X , 
y  e.  Y  |->  x )
16 cnmpt21.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
17 cnmpt21.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
18 tx1cn 14943 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( J  tX  K
)  Cn  J ) )
1916, 17, 18syl2anc 411 . 2  |-  ( ph  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( J 
tX  K )  Cn  J ) )
2015, 19eqeltrrid 2317 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197    |-> cmpt 4145    X. cxp 4717    |` cres 4721    Fn wfn 5313   -onto->wfo 5316   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   1stc1st 6284  TopOnctopon 14684    Cn ccn 14859    tX ctx 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-topgen 13293  df-top 14672  df-topon 14685  df-bases 14717  df-cn 14862  df-tx 14927
This theorem is referenced by:  cnmptcom  14972  txhmeo  14993  txswaphmeo  14995  divcnap  15239  cnrehmeocntop  15284
  Copyright terms: Public domain W3C validator