ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1st Unicode version

Theorem cnmpt1st 14760
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
cnmpt1st  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Distinct variable groups:    x, y, ph    x, X, y    x, Y, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt1st
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fo1st 6243 . . . . . 6  |-  1st : _V -onto-> _V
2 fofn 5500 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . . 5  |-  1st  Fn  _V
4 ssv 3215 . . . . 5  |-  ( X  X.  Y )  C_  _V
5 fnssres 5389 . . . . 5  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
63, 4, 5mp2an 426 . . . 4  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
7 dffn5im 5624 . . . 4  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) ) )
86, 7ax-mp 5 . . 3  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) )
9 fvres 5600 . . . 4  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
109mpteq2ia 4130 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `  z ) )  =  ( z  e.  ( X  X.  Y ) 
|->  ( 1st `  z
) )
11 vex 2775 . . . . 5  |-  x  e. 
_V
12 vex 2775 . . . . 5  |-  y  e. 
_V
1311, 12op1std 6234 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
1413mpompt 6037 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( 1st `  z ) )  =  ( x  e.  X ,  y  e.  Y  |->  x )
158, 10, 143eqtri 2230 . 2  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( x  e.  X , 
y  e.  Y  |->  x )
16 cnmpt21.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
17 cnmpt21.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
18 tx1cn 14741 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( J  tX  K
)  Cn  J ) )
1916, 17, 18syl2anc 411 . 2  |-  ( ph  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( J 
tX  K )  Cn  J ) )
2015, 19eqeltrrid 2293 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166    |-> cmpt 4105    X. cxp 4673    |` cres 4677    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224  TopOnctopon 14482    Cn ccn 14657    tX ctx 14724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-topgen 13092  df-top 14470  df-topon 14483  df-bases 14515  df-cn 14660  df-tx 14725
This theorem is referenced by:  cnmptcom  14770  txhmeo  14791  txswaphmeo  14793  divcnap  15037  cnrehmeocntop  15082
  Copyright terms: Public domain W3C validator