ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt1st Unicode version

Theorem cnmpt1st 12938
Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
cnmpt1st  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Distinct variable groups:    x, y, ph    x, X, y    x, Y, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt1st
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fo1st 6125 . . . . . 6  |-  1st : _V -onto-> _V
2 fofn 5412 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
31, 2ax-mp 5 . . . . 5  |-  1st  Fn  _V
4 ssv 3164 . . . . 5  |-  ( X  X.  Y )  C_  _V
5 fnssres 5301 . . . . 5  |-  ( ( 1st  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
63, 4, 5mp2an 423 . . . 4  |-  ( 1st  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
7 dffn5im 5532 . . . 4  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) ) )
86, 7ax-mp 5 . . 3  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `
 z ) )
9 fvres 5510 . . . 4  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
109mpteq2ia 4068 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( ( 1st  |`  ( X  X.  Y ) ) `  z ) )  =  ( z  e.  ( X  X.  Y ) 
|->  ( 1st `  z
) )
11 vex 2729 . . . . 5  |-  x  e. 
_V
12 vex 2729 . . . . 5  |-  y  e. 
_V
1311, 12op1std 6116 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
1413mpompt 5934 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( 1st `  z ) )  =  ( x  e.  X ,  y  e.  Y  |->  x )
158, 10, 143eqtri 2190 . 2  |-  ( 1st  |`  ( X  X.  Y
) )  =  ( x  e.  X , 
y  e.  Y  |->  x )
16 cnmpt21.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
17 cnmpt21.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
18 tx1cn 12919 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( J  tX  K
)  Cn  J ) )
1916, 17, 18syl2anc 409 . 2  |-  ( ph  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( J 
tX  K )  Cn  J ) )
2015, 19eqeltrrid 2254 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116    |-> cmpt 4043    X. cxp 4602    |` cres 4606    Fn wfn 5183   -onto->wfo 5186   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1stc1st 6106  TopOnctopon 12658    Cn ccn 12835    tX ctx 12902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12646  df-topon 12659  df-bases 12691  df-cn 12838  df-tx 12903
This theorem is referenced by:  cnmptcom  12948  txhmeo  12969  txswaphmeo  12971  divcnap  13205  cnrehmeocntop  13243
  Copyright terms: Public domain W3C validator