ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrecnv Unicode version

Theorem cnrecnv 10951
Description: The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 9680. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnrecnv  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Distinct variable groups:    z, F    x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
21cnref1o 9680 . . . . . 6  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
3 f1ocnv 5493 . . . . . 6  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' F : CC -1-1-onto-> ( RR  X.  RR ) )
4 f1of 5480 . . . . . 6  |-  ( `' F : CC -1-1-onto-> ( RR  X.  RR )  ->  `' F : CC
--> ( RR  X.  RR ) )
52, 3, 4mp2b 8 . . . . 5  |-  `' F : CC --> ( RR  X.  RR )
65a1i 9 . . . 4  |-  ( T. 
->  `' F : CC --> ( RR 
X.  RR ) )
76feqmptd 5590 . . 3  |-  ( T. 
->  `' F  =  (
z  e.  CC  |->  ( `' F `  z ) ) )
87mptru 1373 . 2  |-  `' F  =  ( z  e.  CC  |->  ( `' F `  z ) )
9 df-ov 5899 . . . . . . 7  |-  ( ( Re `  z ) F ( Im `  z ) )  =  ( F `  <. ( Re `  z ) ,  ( Im `  z ) >. )
10 recl 10894 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Re `  z )  e.  RR )
11 imcl 10895 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Im `  z )  e.  RR )
1210recnd 8016 . . . . . . . . 9  |-  ( z  e.  CC  ->  (
Re `  z )  e.  CC )
13 ax-icn 7936 . . . . . . . . . . 11  |-  _i  e.  CC
1413a1i 9 . . . . . . . . . 10  |-  ( z  e.  CC  ->  _i  e.  CC )
1511recnd 8016 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
Im `  z )  e.  CC )
1614, 15mulcld 8008 . . . . . . . . 9  |-  ( z  e.  CC  ->  (
_i  x.  ( Im `  z ) )  e.  CC )
1712, 16addcld 8007 . . . . . . . 8  |-  ( z  e.  CC  ->  (
( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) )  e.  CC )
18 oveq1 5903 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  y
) ) )
19 oveq2 5904 . . . . . . . . . 10  |-  ( y  =  ( Im `  z )  ->  (
_i  x.  y )  =  ( _i  x.  ( Im `  z ) ) )
2019oveq2d 5912 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
( Re `  z
)  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2118, 20, 1ovmpog 6031 . . . . . . . 8  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR  /\  (
( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) )  e.  CC )  -> 
( ( Re `  z ) F ( Im `  z ) )  =  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) ) )
2210, 11, 17, 21syl3anc 1249 . . . . . . 7  |-  ( z  e.  CC  ->  (
( Re `  z
) F ( Im
`  z ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
239, 22eqtr3id 2236 . . . . . 6  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  ( ( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) ) )
24 replim 10900 . . . . . 6  |-  ( z  e.  CC  ->  z  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2523, 24eqtr4d 2225 . . . . 5  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  z )
2625fveq2d 5538 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  ( `' F `  z ) )
27 opelxpi 4676 . . . . . 6  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  ->  <. ( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )
2810, 11, 27syl2anc 411 . . . . 5  |-  ( z  e.  CC  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  e.  ( RR  X.  RR ) )
29 f1ocnvfv1 5799 . . . . 5  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  <.
( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
302, 28, 29sylancr 414 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
3126, 30eqtr3d 2224 . . 3  |-  ( z  e.  CC  ->  ( `' F `  z )  =  <. ( Re `  z ) ,  ( Im `  z )
>. )
3231mpteq2ia 4104 . 2  |-  ( z  e.  CC  |->  ( `' F `  z ) )  =  ( z  e.  CC  |->  <. (
Re `  z ) ,  ( Im `  z ) >. )
338, 32eqtri 2210 1  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2160   <.cop 3610    |-> cmpt 4079    X. cxp 4642   `'ccnv 4643   -->wf 5231   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5896    e. cmpo 5898   CCcc 7839   RRcr 7840   _ici 7843    + caddc 7844    x. cmul 7846   Recre 10881   Imcim 10882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-2 9008  df-cj 10883  df-re 10884  df-im 10885
This theorem is referenced by:  cnrehmeocntop  14553
  Copyright terms: Public domain W3C validator