ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrecnv Unicode version

Theorem cnrecnv 10838
Description: The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 9579. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnrecnv  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Distinct variable groups:    z, F    x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
21cnref1o 9579 . . . . . 6  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
3 f1ocnv 5439 . . . . . 6  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' F : CC -1-1-onto-> ( RR  X.  RR ) )
4 f1of 5426 . . . . . 6  |-  ( `' F : CC -1-1-onto-> ( RR  X.  RR )  ->  `' F : CC
--> ( RR  X.  RR ) )
52, 3, 4mp2b 8 . . . . 5  |-  `' F : CC --> ( RR  X.  RR )
65a1i 9 . . . 4  |-  ( T. 
->  `' F : CC --> ( RR 
X.  RR ) )
76feqmptd 5533 . . 3  |-  ( T. 
->  `' F  =  (
z  e.  CC  |->  ( `' F `  z ) ) )
87mptru 1351 . 2  |-  `' F  =  ( z  e.  CC  |->  ( `' F `  z ) )
9 df-ov 5839 . . . . . . 7  |-  ( ( Re `  z ) F ( Im `  z ) )  =  ( F `  <. ( Re `  z ) ,  ( Im `  z ) >. )
10 recl 10781 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Re `  z )  e.  RR )
11 imcl 10782 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Im `  z )  e.  RR )
1210recnd 7918 . . . . . . . . 9  |-  ( z  e.  CC  ->  (
Re `  z )  e.  CC )
13 ax-icn 7839 . . . . . . . . . . 11  |-  _i  e.  CC
1413a1i 9 . . . . . . . . . 10  |-  ( z  e.  CC  ->  _i  e.  CC )
1511recnd 7918 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
Im `  z )  e.  CC )
1614, 15mulcld 7910 . . . . . . . . 9  |-  ( z  e.  CC  ->  (
_i  x.  ( Im `  z ) )  e.  CC )
1712, 16addcld 7909 . . . . . . . 8  |-  ( z  e.  CC  ->  (
( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) )  e.  CC )
18 oveq1 5843 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  y
) ) )
19 oveq2 5844 . . . . . . . . . 10  |-  ( y  =  ( Im `  z )  ->  (
_i  x.  y )  =  ( _i  x.  ( Im `  z ) ) )
2019oveq2d 5852 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
( Re `  z
)  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2118, 20, 1ovmpog 5967 . . . . . . . 8  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR  /\  (
( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) )  e.  CC )  -> 
( ( Re `  z ) F ( Im `  z ) )  =  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) ) )
2210, 11, 17, 21syl3anc 1227 . . . . . . 7  |-  ( z  e.  CC  ->  (
( Re `  z
) F ( Im
`  z ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
239, 22eqtr3id 2211 . . . . . 6  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  ( ( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) ) )
24 replim 10787 . . . . . 6  |-  ( z  e.  CC  ->  z  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2523, 24eqtr4d 2200 . . . . 5  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  z )
2625fveq2d 5484 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  ( `' F `  z ) )
27 opelxpi 4630 . . . . . 6  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  ->  <. ( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )
2810, 11, 27syl2anc 409 . . . . 5  |-  ( z  e.  CC  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  e.  ( RR  X.  RR ) )
29 f1ocnvfv1 5739 . . . . 5  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  <.
( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
302, 28, 29sylancr 411 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
3126, 30eqtr3d 2199 . . 3  |-  ( z  e.  CC  ->  ( `' F `  z )  =  <. ( Re `  z ) ,  ( Im `  z )
>. )
3231mpteq2ia 4062 . 2  |-  ( z  e.  CC  |->  ( `' F `  z ) )  =  ( z  e.  CC  |->  <. (
Re `  z ) ,  ( Im `  z ) >. )
338, 32eqtri 2185 1  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Colors of variables: wff set class
Syntax hints:    = wceq 1342   T. wtru 1343    e. wcel 2135   <.cop 3573    |-> cmpt 4037    X. cxp 4596   `'ccnv 4597   -->wf 5178   -1-1-onto->wf1o 5181   ` cfv 5182  (class class class)co 5836    e. cmpo 5838   CCcc 7742   RRcr 7743   _ici 7746    + caddc 7747    x. cmul 7749   Recre 10768   Imcim 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-2 8907  df-cj 10770  df-re 10771  df-im 10772
This theorem is referenced by:  cnrehmeocntop  13134
  Copyright terms: Public domain W3C validator