ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2nd Unicode version

Theorem cnmpt2nd 14836
Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
cnmpt2nd  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K
)  Cn  K ) )
Distinct variable groups:    x, y, ph    x, X, y    x, Y, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt2nd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6257 . . . . . 6  |-  2nd : _V -onto-> _V
2 fofn 5512 . . . . . 6  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
31, 2ax-mp 5 . . . . 5  |-  2nd  Fn  _V
4 ssv 3219 . . . . 5  |-  ( X  X.  Y )  C_  _V
5 fnssres 5398 . . . . 5  |-  ( ( 2nd  Fn  _V  /\  ( X  X.  Y
)  C_  _V )  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
63, 4, 5mp2an 426 . . . 4  |-  ( 2nd  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
7 dffn5im 5637 . . . 4  |-  ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( 2nd  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z ) ) )
86, 7ax-mp 5 . . 3  |-  ( 2nd  |`  ( X  X.  Y
) )  =  ( z  e.  ( X  X.  Y )  |->  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z ) )
9 fvres 5613 . . . 4  |-  ( z  e.  ( X  X.  Y )  ->  (
( 2nd  |`  ( X  X.  Y ) ) `
 z )  =  ( 2nd `  z
) )
109mpteq2ia 4138 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( ( 2nd  |`  ( X  X.  Y ) ) `  z ) )  =  ( z  e.  ( X  X.  Y ) 
|->  ( 2nd `  z
) )
11 vex 2776 . . . . 5  |-  x  e. 
_V
12 vex 2776 . . . . 5  |-  y  e. 
_V
1311, 12op2ndd 6248 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
1413mpompt 6050 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  ( 2nd `  z ) )  =  ( x  e.  X ,  y  e.  Y  |->  y )
158, 10, 143eqtri 2231 . 2  |-  ( 2nd  |`  ( X  X.  Y
) )  =  ( x  e.  X , 
y  e.  Y  |->  y )
16 cnmpt21.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
17 cnmpt21.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
18 tx2cn 14817 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( J  tX  K
)  Cn  K ) )
1916, 17, 18syl2anc 411 . 2  |-  ( ph  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( J 
tX  K )  Cn  K ) )
2015, 19eqeltrrid 2294 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K
)  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170    |-> cmpt 4113    X. cxp 4681    |` cres 4685    Fn wfn 5275   -onto->wfo 5278   ` cfv 5280  (class class class)co 5957    e. cmpo 5959   2ndc2nd 6238  TopOnctopon 14557    Cn ccn 14732    tX ctx 14799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-topgen 13167  df-top 14545  df-topon 14558  df-bases 14590  df-cn 14735  df-tx 14800
This theorem is referenced by:  cnmptcom  14845  txhmeo  14866  txswaphmeo  14868  divcnap  15112  cnrehmeocntop  15157
  Copyright terms: Public domain W3C validator