ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf Unicode version

Theorem expcncf 12761
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, N

Proof of Theorem expcncf
Dummy variables  w  k  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . 4  |-  ( w  =  0  ->  (
x ^ w )  =  ( x ^
0 ) )
21mpteq2dv 4019 . . 3  |-  ( w  =  0  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2208 . 2  |-  ( w  =  0  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
0 ) )  e.  ( CC -cn-> CC ) ) )
4 oveq2 5782 . . . 4  |-  ( w  =  k  ->  (
x ^ w )  =  ( x ^
k ) )
54mpteq2dv 4019 . . 3  |-  ( w  =  k  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2208 . 2  |-  ( w  =  k  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( CC -cn-> CC ) ) )
7 oveq2 5782 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
x ^ w )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4019 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2208 . 2  |-  ( w  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( CC -cn-> CC ) ) )
10 oveq2 5782 . . . 4  |-  ( w  =  N  ->  (
x ^ w )  =  ( x ^ N ) )
1110mpteq2dv 4019 . . 3  |-  ( w  =  N  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2208 . 2  |-  ( w  =  N  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) ) )
13 exp0 10297 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4014 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 ax-1cn 7713 . . . 4  |-  1  e.  CC
16 ssid 3117 . . . 4  |-  CC  C_  CC
17 cncfmptc 12751 . . . 4  |-  ( ( 1  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  CC  |->  1 )  e.  ( CC
-cn-> CC ) )
1815, 16, 16, 17mp3an 1315 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( CC -cn-> CC )
1914, 18eqeltri 2212 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( CC -cn-> CC )
20 oveq1 5781 . . . . . . 7  |-  ( a  =  x  ->  (
a ^ k )  =  ( x ^
k ) )
2120cbvmptv 4024 . . . . . 6  |-  ( a  e.  CC  |->  ( a ^ k ) )  =  ( x  e.  CC  |->  ( x ^
k ) )
2221eleq1i 2205 . . . . 5  |-  ( ( a  e.  CC  |->  ( a ^ k ) )  e.  ( CC
-cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( CC -cn-> CC ) )
2322biimpi 119 . . . . . . 7  |-  ( ( a  e.  CC  |->  ( a ^ k ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( x ^ k ) )  e.  ( CC
-cn-> CC ) )
2423adantl 275 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )
25 cncfmptid 12752 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  CC  |->  x )  e.  ( CC
-cn-> CC ) )
2616, 16, 25mp2an 422 . . . . . . 7  |-  ( x  e.  CC  |->  x )  e.  ( CC -cn-> CC )
2726a1i 9 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  x )  e.  ( CC -cn-> CC ) )
2824, 27mulcncf 12760 . . . . 5  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) )
2922, 28sylan2br 286 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) )
30 expp1 10300 . . . . . . . 8  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
3130ancoms 266 . . . . . . 7  |-  ( ( k  e.  NN0  /\  x  e.  CC )  ->  ( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
3231mpteq2dva 4018 . . . . . 6  |-  ( k  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
3332eleq1d 2208 . . . . 5  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  e.  ( CC
-cn-> CC )  <->  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) )  e.  ( CC -cn-> CC ) ) )
3433adantr 274 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( CC -cn-> CC )  <-> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) ) )
3529, 34mpbird 166 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( CC -cn-> CC ) )
3635ex 114 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  e.  ( CC
-cn-> CC ) ) )
373, 6, 9, 12, 19, 36nn0ind 9165 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    C_ wss 3071    |-> cmpt 3989  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   NN0cn0 8977   ^cexp 10292   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-cncf 12727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator