ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcncf Unicode version

Theorem expcncf 15023
Description: The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
expcncf  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, N

Proof of Theorem expcncf
Dummy variables  w  k  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5951 . . . 4  |-  ( w  =  0  ->  (
x ^ w )  =  ( x ^
0 ) )
21mpteq2dv 4134 . . 3  |-  ( w  =  0  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ 0 ) ) )
32eleq1d 2273 . 2  |-  ( w  =  0  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
0 ) )  e.  ( CC -cn-> CC ) ) )
4 oveq2 5951 . . . 4  |-  ( w  =  k  ->  (
x ^ w )  =  ( x ^
k ) )
54mpteq2dv 4134 . . 3  |-  ( w  =  k  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ k ) ) )
65eleq1d 2273 . 2  |-  ( w  =  k  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( CC -cn-> CC ) ) )
7 oveq2 5951 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
x ^ w )  =  ( x ^
( k  +  1 ) ) )
87mpteq2dv 4134 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) ) )
98eleq1d 2273 . 2  |-  ( w  =  ( k  +  1 )  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( CC -cn-> CC ) ) )
10 oveq2 5951 . . . 4  |-  ( w  =  N  ->  (
x ^ w )  =  ( x ^ N ) )
1110mpteq2dv 4134 . . 3  |-  ( w  =  N  ->  (
x  e.  CC  |->  ( x ^ w ) )  =  ( x  e.  CC  |->  ( x ^ N ) ) )
1211eleq1d 2273 . 2  |-  ( w  =  N  ->  (
( x  e.  CC  |->  ( x ^ w
) )  e.  ( CC -cn-> CC )  <->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) ) )
13 exp0 10686 . . . 4  |-  ( x  e.  CC  ->  (
x ^ 0 )  =  1 )
1413mpteq2ia 4129 . . 3  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  =  ( x  e.  CC  |->  1 )
15 ax-1cn 8017 . . . 4  |-  1  e.  CC
16 ssid 3212 . . . 4  |-  CC  C_  CC
17 cncfmptc 15010 . . . 4  |-  ( ( 1  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  CC  |->  1 )  e.  ( CC
-cn-> CC ) )
1815, 16, 16, 17mp3an 1349 . . 3  |-  ( x  e.  CC  |->  1 )  e.  ( CC -cn-> CC )
1914, 18eqeltri 2277 . 2  |-  ( x  e.  CC  |->  ( x ^ 0 ) )  e.  ( CC -cn-> CC )
20 oveq1 5950 . . . . . . 7  |-  ( a  =  x  ->  (
a ^ k )  =  ( x ^
k ) )
2120cbvmptv 4139 . . . . . 6  |-  ( a  e.  CC  |->  ( a ^ k ) )  =  ( x  e.  CC  |->  ( x ^
k ) )
2221eleq1i 2270 . . . . 5  |-  ( ( a  e.  CC  |->  ( a ^ k ) )  e.  ( CC
-cn-> CC )  <->  ( x  e.  CC  |->  ( x ^
k ) )  e.  ( CC -cn-> CC ) )
2322biimpi 120 . . . . . . 7  |-  ( ( a  e.  CC  |->  ( a ^ k ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( x ^ k ) )  e.  ( CC
-cn-> CC ) )
2423adantl 277 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )
25 cncfmptid 15011 . . . . . . . 8  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  CC  |->  x )  e.  ( CC
-cn-> CC ) )
2616, 16, 25mp2an 426 . . . . . . 7  |-  ( x  e.  CC  |->  x )  e.  ( CC -cn-> CC )
2726a1i 9 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  x )  e.  ( CC -cn-> CC ) )
2824, 27mulcncf 15022 . . . . 5  |-  ( ( k  e.  NN0  /\  ( a  e.  CC  |->  ( a ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) )
2922, 28sylan2br 288 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) )
30 expp1 10689 . . . . . . . 8  |-  ( ( x  e.  CC  /\  k  e.  NN0 )  -> 
( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
3130ancoms 268 . . . . . . 7  |-  ( ( k  e.  NN0  /\  x  e.  CC )  ->  ( x ^ (
k  +  1 ) )  =  ( ( x ^ k )  x.  x ) )
3231mpteq2dva 4133 . . . . . 6  |-  ( k  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  =  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) ) )
3332eleq1d 2273 . . . . 5  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  e.  ( CC
-cn-> CC )  <->  ( x  e.  CC  |->  ( ( x ^ k )  x.  x ) )  e.  ( CC -cn-> CC ) ) )
3433adantr 276 . . . 4  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( ( x  e.  CC  |->  ( x ^
( k  +  1 ) ) )  e.  ( CC -cn-> CC )  <-> 
( x  e.  CC  |->  ( ( x ^
k )  x.  x
) )  e.  ( CC -cn-> CC ) ) )
3529, 34mpbird 167 . . 3  |-  ( ( k  e.  NN0  /\  ( x  e.  CC  |->  ( x ^ k
) )  e.  ( CC -cn-> CC ) )  -> 
( x  e.  CC  |->  ( x ^ (
k  +  1 ) ) )  e.  ( CC -cn-> CC ) )
3635ex 115 . 2  |-  ( k  e.  NN0  ->  ( ( x  e.  CC  |->  ( x ^ k ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( x ^ ( k  +  1 ) ) )  e.  ( CC
-cn-> CC ) ) )
373, 6, 9, 12, 19, 36nn0ind 9486 1  |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175    C_ wss 3165    |-> cmpt 4104  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929   NN0cn0 9294   ^cexp 10681   -cn->ccncf 14984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-cncf 14985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator