ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia GIF version

Theorem mpteq2ia 4075
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2ia (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2170 . . 3 𝐴 = 𝐴
21ax-gen 1442 . 2 𝑥 𝐴 = 𝐴
3 mpteq2ia.1 . . 3 (𝑥𝐴𝐵 = 𝐶)
43rgen 2523 . 2 𝑥𝐴 𝐵 = 𝐶
5 mpteq12f 4069 . 2 ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
62, 4, 5mp2an 424 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346   = wceq 1348  wcel 2141  wral 2448  cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-opab 4051  df-mpt 4052
This theorem is referenced by:  mpteq2i  4076  feqresmpt  5550  elfvmptrab  5591  fmptap  5686  offres  6114  cnrecnv  10874  ege2le3  11634  eirraplem  11739  cnmpt1st  13082  cnmpt2nd  13083  expcncf  13386  dvexp  13469  dveflem  13481  dvef  13482
  Copyright terms: Public domain W3C validator