| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1495 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | rgen 2583 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
| 5 | mpteq12f 4163 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 6 | 2, 4, 5 | mp2an 426 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: mpteq2i 4170 feqresmpt 5687 elfvmptrab 5729 fmptap 5828 offres 6278 cnrecnv 11416 ege2le3 12177 eirraplem 12283 cnmpt1st 14956 cnmpt2nd 14957 expcn 15237 expcncf 15277 dvexp 15379 dveflem 15394 dvef 15395 elply2 15403 plyid 15414 |
| Copyright terms: Public domain | W3C validator |