ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia GIF version

Theorem mpteq2ia 4120
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2ia (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2196 . . 3 𝐴 = 𝐴
21ax-gen 1463 . 2 𝑥 𝐴 = 𝐴
3 mpteq2ia.1 . . 3 (𝑥𝐴𝐵 = 𝐶)
43rgen 2550 . 2 𝑥𝐴 𝐵 = 𝐶
5 mpteq12f 4114 . 2 ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
62, 4, 5mp2an 426 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2167  wral 2475  cmpt 4095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-opab 4096  df-mpt 4097
This theorem is referenced by:  mpteq2i  4121  feqresmpt  5618  elfvmptrab  5660  fmptap  5755  offres  6201  cnrecnv  11094  ege2le3  11855  eirraplem  11961  cnmpt1st  14632  cnmpt2nd  14633  expcn  14913  expcncf  14953  dvexp  15055  dveflem  15070  dvef  15071  elply2  15079  plyid  15090
  Copyright terms: Public domain W3C validator