| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1463 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | rgen 2550 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
| 5 | mpteq12f 4113 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 6 | 2, 4, 5 | mp2an 426 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ↦ cmpt 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-opab 4095 df-mpt 4096 |
| This theorem is referenced by: mpteq2i 4120 feqresmpt 5615 elfvmptrab 5657 fmptap 5752 offres 6192 cnrecnv 11075 ege2le3 11836 eirraplem 11942 cnmpt1st 14524 cnmpt2nd 14525 expcn 14805 expcncf 14845 dvexp 14947 dveflem 14962 dvef 14963 elply2 14971 plyid 14982 |
| Copyright terms: Public domain | W3C validator |