ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq2ia GIF version

Theorem mpteq2ia 4169
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
Hypothesis
Ref Expression
mpteq2ia.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2ia (𝑥𝐴𝐵) = (𝑥𝐴𝐶)

Proof of Theorem mpteq2ia
StepHypRef Expression
1 eqid 2229 . . 3 𝐴 = 𝐴
21ax-gen 1495 . 2 𝑥 𝐴 = 𝐴
3 mpteq2ia.1 . . 3 (𝑥𝐴𝐵 = 𝐶)
43rgen 2583 . 2 𝑥𝐴 𝐵 = 𝐶
5 mpteq12f 4163 . 2 ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
62, 4, 5mp2an 426 1 (𝑥𝐴𝐵) = (𝑥𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  wral 2508  cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-opab 4145  df-mpt 4146
This theorem is referenced by:  mpteq2i  4170  feqresmpt  5687  elfvmptrab  5729  fmptap  5828  offres  6278  cnrecnv  11416  ege2le3  12177  eirraplem  12283  cnmpt1st  14956  cnmpt2nd  14957  expcn  15237  expcncf  15277  dvexp  15379  dveflem  15394  dvef  15395  elply2  15403  plyid  15414
  Copyright terms: Public domain W3C validator