![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpteq2ia | GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | ax-gen 1460 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | rgen 2547 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
5 | mpteq12f 4110 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
6 | 2, 4, 5 | mp2an 426 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ↦ cmpt 4091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-opab 4092 df-mpt 4093 |
This theorem is referenced by: mpteq2i 4117 feqresmpt 5612 elfvmptrab 5654 fmptap 5749 offres 6189 cnrecnv 11057 ege2le3 11817 eirraplem 11923 cnmpt1st 14467 cnmpt2nd 14468 expcn 14748 expcncf 14788 dvexp 14890 dveflem 14905 dvef 14906 elply2 14914 plyid 14925 |
Copyright terms: Public domain | W3C validator |