| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteq2ia | GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1471 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | rgen 2558 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
| 5 | mpteq12f 4123 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 6 | 2, 4, 5 | mp2an 426 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ↦ cmpt 4104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: mpteq2i 4130 feqresmpt 5627 elfvmptrab 5669 fmptap 5764 offres 6210 cnrecnv 11140 ege2le3 11901 eirraplem 12007 cnmpt1st 14678 cnmpt2nd 14679 expcn 14959 expcncf 14999 dvexp 15101 dveflem 15116 dvef 15117 elply2 15125 plyid 15136 |
| Copyright terms: Public domain | W3C validator |