ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqresmpt Unicode version

Theorem feqresmpt 5656
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
feqmptd.1  |-  ( ph  ->  F : A --> B )
feqresmpt.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
feqresmpt  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem feqresmpt
StepHypRef Expression
1 feqmptd.1 . . . 4  |-  ( ph  ->  F : A --> B )
2 feqresmpt.2 . . . 4  |-  ( ph  ->  C  C_  A )
3 fssres 5473 . . . 4  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 411 . . 3  |-  ( ph  ->  ( F  |`  C ) : C --> B )
54feqmptd 5655 . 2  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( ( F  |`  C ) `  x
) ) )
6 fvres 5623 . . 3  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
76mpteq2ia 4146 . 2  |-  ( x  e.  C  |->  ( ( F  |`  C ) `  x ) )  =  ( x  e.  C  |->  ( F `  x
) )
85, 7eqtrdi 2256 1  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174    |-> cmpt 4121    |` cres 4695   -->wf 5286   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by:  pfxres  11172  dvmulxxbr  15289
  Copyright terms: Public domain W3C validator