ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqresmpt Unicode version

Theorem feqresmpt 5633
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
feqmptd.1  |-  ( ph  ->  F : A --> B )
feqresmpt.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
feqresmpt  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem feqresmpt
StepHypRef Expression
1 feqmptd.1 . . . 4  |-  ( ph  ->  F : A --> B )
2 feqresmpt.2 . . . 4  |-  ( ph  ->  C  C_  A )
3 fssres 5451 . . . 4  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
41, 2, 3syl2anc 411 . . 3  |-  ( ph  ->  ( F  |`  C ) : C --> B )
54feqmptd 5632 . 2  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( ( F  |`  C ) `  x
) ) )
6 fvres 5600 . . 3  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
76mpteq2ia 4130 . 2  |-  ( x  e.  C  |->  ( ( F  |`  C ) `  x ) )  =  ( x  e.  C  |->  ( F `  x
) )
85, 7eqtrdi 2254 1  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166    |-> cmpt 4105    |` cres 4677   -->wf 5267   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
This theorem is referenced by:  dvmulxxbr  15174
  Copyright terms: Public domain W3C validator