ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdvds Unicode version

Theorem rpdvds 10987
Description: If  K is relatively prime to  N then it is also relatively prime to any divisor  M of  N. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 944 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  K  e.  ZZ )
2 simpl2 945 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  e.  ZZ )
3 gcddvds 10861 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
41, 2, 3syl2anc 403 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
54simpld 110 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  K
)
64simprd 112 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  M
)
7 simprr 499 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  ||  N
)
8 1ne0 8428 . . . . . . . . . . 11  |-  1  =/=  0
9 simprl 498 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =  1 )
109neeq1d 2269 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =/=  0  <->  1  =/=  0
) )
118, 10mpbiri 166 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =/=  0
)
1211neneqd 2272 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  gcd  N )  =  0 )
13 simprl 498 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  K  =  0 )
14 simprr 499 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  =  0 )
15 simplrr 503 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  ||  N
)
1614, 15eqbrtrrd 3844 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  0  ||  N
)
17 simpll3 982 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  e.  ZZ )
18 0dvds 10722 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1917, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( 0  ||  N 
<->  N  =  0 ) )
2016, 19mpbid 145 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  =  0 )
2113, 20jca 300 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( K  =  0  /\  N  =  0 ) )
2221ex 113 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  =  0  /\  N  =  0 ) ) )
23 simpl3 946 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  N  e.  ZZ )
24 gcdeq0 10874 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
251, 23, 24syl2anc 403 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
2622, 25sylibrd 167 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  gcd  N )  =  0 ) )
2712, 26mtod 622 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  M  =  0 ) )
28 gcdn0cl 10860 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( K  =  0  /\  M  =  0 ) )  ->  ( K  gcd  M )  e.  NN )
291, 2, 27, 28syl21anc 1171 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  NN )
3029nnzd 8803 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  ZZ )
31 dvdstr 10739 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  M )  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
3230, 2, 23, 31syl3anc 1172 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
336, 7, 32mp2and 424 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  N
)
3412, 25mtbid 630 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  N  =  0 ) )
35 dvdslegcd 10862 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( K  =  0  /\  N  =  0
) )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
3630, 1, 23, 34, 35syl31anc 1175 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
375, 33, 36mp2and 424 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  ( K  gcd  N ) )
3837, 9breqtrd 3846 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  1
)
39 nnle1eq1 8384 . . 3  |-  ( ( K  gcd  M )  e.  NN  ->  (
( K  gcd  M
)  <_  1  <->  ( K  gcd  M )  =  1 ) )
4029, 39syl 14 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  <_ 
1  <->  ( K  gcd  M )  =  1 ) )
4138, 40mpbid 145 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 922    = wceq 1287    e. wcel 1436    =/= wne 2251   class class class wbr 3822  (class class class)co 5615   0cc0 7297   1c1 7298    <_ cle 7470   NNcn 8360   ZZcz 8686    || cdvds 10702    gcd cgcd 10844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-sup 6626  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-fz 9360  df-fzo 9485  df-fl 9608  df-mod 9661  df-iseq 9783  df-iexp 9857  df-cj 10175  df-re 10176  df-im 10177  df-rsqrt 10330  df-abs 10331  df-dvds 10703  df-gcd 10845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator