ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdvds Unicode version

Theorem rpdvds 12496
Description: If  K is relatively prime to  N then it is also relatively prime to any divisor  M of  N. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 1003 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  K  e.  ZZ )
2 simpl2 1004 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  e.  ZZ )
3 gcddvds 12359 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
41, 2, 3syl2anc 411 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
54simpld 112 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  K
)
64simprd 114 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  M
)
7 simprr 531 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  ||  N
)
8 1ne0 9124 . . . . . . . . . . 11  |-  1  =/=  0
9 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =  1 )
109neeq1d 2395 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =/=  0  <->  1  =/=  0
) )
118, 10mpbiri 168 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =/=  0
)
1211neneqd 2398 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  gcd  N )  =  0 )
13 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  K  =  0 )
14 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  =  0 )
15 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  ||  N
)
1614, 15eqbrtrrd 4075 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  0  ||  N
)
17 simpll3 1041 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  e.  ZZ )
18 0dvds 12197 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1917, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( 0  ||  N 
<->  N  =  0 ) )
2016, 19mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  =  0 )
2113, 20jca 306 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( K  =  0  /\  N  =  0 ) )
2221ex 115 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  =  0  /\  N  =  0 ) ) )
23 simpl3 1005 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  N  e.  ZZ )
24 gcdeq0 12373 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
251, 23, 24syl2anc 411 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
2622, 25sylibrd 169 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  gcd  N )  =  0 ) )
2712, 26mtod 665 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  M  =  0 ) )
28 gcdn0cl 12358 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( K  =  0  /\  M  =  0 ) )  ->  ( K  gcd  M )  e.  NN )
291, 2, 27, 28syl21anc 1249 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  NN )
3029nnzd 9514 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  ZZ )
31 dvdstr 12214 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  M )  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
3230, 2, 23, 31syl3anc 1250 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
336, 7, 32mp2and 433 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  N
)
3412, 25mtbid 674 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  N  =  0 ) )
35 dvdslegcd 12360 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( K  =  0  /\  N  =  0
) )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
3630, 1, 23, 34, 35syl31anc 1253 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
375, 33, 36mp2and 433 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  ( K  gcd  N ) )
3837, 9breqtrd 4077 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  1
)
39 nnle1eq1 9080 . . 3  |-  ( ( K  gcd  M )  e.  NN  ->  (
( K  gcd  M
)  <_  1  <->  ( K  gcd  M )  =  1 ) )
4029, 39syl 14 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  <_ 
1  <->  ( K  gcd  M )  =  1 ) )
4138, 40mpbid 147 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4051  (class class class)co 5957   0cc0 7945   1c1 7946    <_ cle 8128   NNcn 9056   ZZcz 9392    || cdvds 12173    gcd cgcd 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350
This theorem is referenced by:  mpodvdsmulf1o  15537  lgsquad2lem2  15634
  Copyright terms: Public domain W3C validator