ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdvds Unicode version

Theorem rpdvds 12101
Description: If  K is relatively prime to  N then it is also relatively prime to any divisor  M of  N. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 1000 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  K  e.  ZZ )
2 simpl2 1001 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  e.  ZZ )
3 gcddvds 11966 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
41, 2, 3syl2anc 411 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
54simpld 112 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  K
)
64simprd 114 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  M
)
7 simprr 531 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  ||  N
)
8 1ne0 8989 . . . . . . . . . . 11  |-  1  =/=  0
9 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =  1 )
109neeq1d 2365 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =/=  0  <->  1  =/=  0
) )
118, 10mpbiri 168 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =/=  0
)
1211neneqd 2368 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  gcd  N )  =  0 )
13 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  K  =  0 )
14 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  =  0 )
15 simplrr 536 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  ||  N
)
1614, 15eqbrtrrd 4029 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  0  ||  N
)
17 simpll3 1038 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  e.  ZZ )
18 0dvds 11820 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1917, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( 0  ||  N 
<->  N  =  0 ) )
2016, 19mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  =  0 )
2113, 20jca 306 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( K  =  0  /\  N  =  0 ) )
2221ex 115 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  =  0  /\  N  =  0 ) ) )
23 simpl3 1002 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  N  e.  ZZ )
24 gcdeq0 11980 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
251, 23, 24syl2anc 411 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
2622, 25sylibrd 169 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  gcd  N )  =  0 ) )
2712, 26mtod 663 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  M  =  0 ) )
28 gcdn0cl 11965 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( K  =  0  /\  M  =  0 ) )  ->  ( K  gcd  M )  e.  NN )
291, 2, 27, 28syl21anc 1237 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  NN )
3029nnzd 9376 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  ZZ )
31 dvdstr 11837 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  M )  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
3230, 2, 23, 31syl3anc 1238 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
336, 7, 32mp2and 433 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  N
)
3412, 25mtbid 672 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  N  =  0 ) )
35 dvdslegcd 11967 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( K  =  0  /\  N  =  0
) )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
3630, 1, 23, 34, 35syl31anc 1241 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
375, 33, 36mp2and 433 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  ( K  gcd  N ) )
3837, 9breqtrd 4031 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  1
)
39 nnle1eq1 8945 . . 3  |-  ( ( K  gcd  M )  e.  NN  ->  (
( K  gcd  M
)  <_  1  <->  ( K  gcd  M )  =  1 ) )
4029, 39syl 14 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  <_ 
1  <->  ( K  gcd  M )  =  1 ) )
4138, 40mpbid 147 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4005  (class class class)co 5877   0cc0 7813   1c1 7814    <_ cle 7995   NNcn 8921   ZZcz 9255    || cdvds 11796    gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator