ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemodd Unicode version

Theorem oddpwdclemodd 12689
Description: Lemma for oddpwdc 12691. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemodd  |-  ( A  e.  NN  ->  -.  2  ||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) )
Distinct variable group:    z, A

Proof of Theorem oddpwdclemodd
StepHypRef Expression
1 oddpwdclemndvds 12688 . . 3  |-  ( A  e.  NN  ->  -.  ( 2 ^ (
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  ||  A
)
2 2cn 9177 . . . . 5  |-  2  e.  CC
3 pw2dvdseu 12685 . . . . . 6  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
4 riotacl 5969 . . . . . 6  |-  ( E! z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A )  ->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  e. 
NN0 )
53, 4syl 14 . . . . 5  |-  ( A  e.  NN  ->  ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  e.  NN0 )
6 expp1 10763 . . . . 5  |-  ( ( 2  e.  CC  /\  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )  ->  ( 2 ^ ( ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  +  1 ) )  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 ) )
72, 5, 6sylancr 414 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( (
iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  =  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 ) )
87breq1d 4092 . . 3  |-  ( A  e.  NN  ->  (
( 2 ^ (
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  ||  A  <->  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 )  ||  A ) )
91, 8mtbid 676 . 2  |-  ( A  e.  NN  ->  -.  ( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A
)
10 nncn 9114 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
11 2nn 9268 . . . . . . . . 9  |-  2  e.  NN
1211a1i 9 . . . . . . . 8  |-  ( A  e.  NN  ->  2  e.  NN )
1312, 5nnexpcld 10912 . . . . . . 7  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
1413nncnd 9120 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
1513nnap0d 9152 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
1610, 14, 15divcanap2d 8935 . . . . 5  |-  ( A  e.  NN  ->  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  =  A )
1716eqcomd 2235 . . . 4  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) )  x.  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) ) )
1817breq2d 4094 . . 3  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A  <->  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 )  ||  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) ) )
1912nnzd 9564 . . . 4  |-  ( A  e.  NN  ->  2  e.  ZZ )
20 id 19 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  NN )
21 oddpwdclemdvds 12687 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  ||  A
)
22 nndivdvds 12302 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )  ->  ( ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) 
||  A  <->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN ) )
2322biimpa 296 . . . . . 6  |-  ( ( ( A  e.  NN  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )  /\  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  ||  A )  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN )
2420, 13, 21, 23syl21anc 1270 . . . . 5  |-  ( A  e.  NN  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN )
2524nnzd 9564 . . . 4  |-  ( A  e.  NN  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  ZZ )
2613nnzd 9564 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  ZZ )
2713nnne0d 9151 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  =/=  0
)
28 dvdscmulr 12326 . . . 4  |-  ( ( 2  e.  ZZ  /\  ( A  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) )  e.  ZZ  /\  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  ZZ  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  =/=  0
) )  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  <->  2  ||  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) )
2919, 25, 26, 27, 28syl112anc 1275 . . 3  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  <->  2  ||  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) )
3018, 29bitrd 188 . 2  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A  <->  2 
||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) ) )
319, 30mtbid 676 1  |-  ( A  e.  NN  ->  -.  2  ||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    =/= wne 2400   E!wreu 2510   class class class wbr 4082   iota_crio 5952  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    / cdiv 8815   NNcn 9106   2c2 9157   NN0cn0 9365   ZZcz 9442   ^cexp 10755    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by:  oddpwdclemdc  12690
  Copyright terms: Public domain W3C validator