ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemodd Unicode version

Theorem oddpwdclemodd 12171
Description: Lemma for oddpwdc 12173. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemodd  |-  ( A  e.  NN  ->  -.  2  ||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) )
Distinct variable group:    z, A

Proof of Theorem oddpwdclemodd
StepHypRef Expression
1 oddpwdclemndvds 12170 . . 3  |-  ( A  e.  NN  ->  -.  ( 2 ^ (
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  ||  A
)
2 2cn 8989 . . . . 5  |-  2  e.  CC
3 pw2dvdseu 12167 . . . . . 6  |-  ( A  e.  NN  ->  E! z  e.  NN0  ( ( 2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )
4 riotacl 5844 . . . . . 6  |-  ( E! z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A )  ->  ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  e. 
NN0 )
53, 4syl 14 . . . . 5  |-  ( A  e.  NN  ->  ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) )  e.  NN0 )
6 expp1 10526 . . . . 5  |-  ( ( 2  e.  CC  /\  ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  e.  NN0 )  ->  ( 2 ^ ( ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) )  +  1 ) )  =  ( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 ) )
72, 5, 6sylancr 414 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( (
iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  =  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 ) )
87breq1d 4013 . . 3  |-  ( A  e.  NN  ->  (
( 2 ^ (
( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) )  +  1 ) )  ||  A  <->  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 )  ||  A ) )
91, 8mtbid 672 . 2  |-  ( A  e.  NN  ->  -.  ( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A
)
10 nncn 8926 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
11 2nn 9079 . . . . . . . . 9  |-  2  e.  NN
1211a1i 9 . . . . . . . 8  |-  ( A  e.  NN  ->  2  e.  NN )
1312, 5nnexpcld 10675 . . . . . . 7  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )
1413nncnd 8932 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  CC )
1513nnap0d 8964 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) #  0 )
1610, 14, 15divcanap2d 8748 . . . . 5  |-  ( A  e.  NN  ->  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  =  A )
1716eqcomd 2183 . . . 4  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) )  x.  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) ) )
1817breq2d 4015 . . 3  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A  <->  ( ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  2 )  ||  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) ) )
1912nnzd 9373 . . . 4  |-  ( A  e.  NN  ->  2  e.  ZZ )
20 id 19 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  NN )
21 oddpwdclemdvds 12169 . . . . . 6  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  ||  A
)
22 nndivdvds 11802 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )  ->  ( ( 2 ^ ( iota_ z  e. 
NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A ) ) ) 
||  A  <->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN ) )
2322biimpa 296 . . . . . 6  |-  ( ( ( A  e.  NN  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  NN )  /\  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  ||  A )  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN )
2420, 13, 21, 23syl21anc 1237 . . . . 5  |-  ( A  e.  NN  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  NN )
2524nnzd 9373 . . . 4  |-  ( A  e.  NN  ->  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) )  e.  ZZ )
2613nnzd 9373 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  ZZ )
2713nnne0d 8963 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  =/=  0
)
28 dvdscmulr 11826 . . . 4  |-  ( ( 2  e.  ZZ  /\  ( A  /  (
2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) )  e.  ZZ  /\  ( ( 2 ^ ( iota_ z  e.  NN0  ( (
2 ^ z ) 
||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  e.  ZZ  /\  ( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  =/=  0
) )  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  <->  2  ||  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) )
2919, 25, 26, 27, 28syl112anc 1242 . . 3  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  (
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) )  x.  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) )  <->  2  ||  ( A  /  ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) ) ) ) )
3018, 29bitrd 188 . 2  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( iota_ z  e.  NN0  ( ( 2 ^ z )  ||  A  /\  -.  ( 2 ^ ( z  +  1 ) )  ||  A
) ) )  x.  2 )  ||  A  <->  2 
||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) ) )
319, 30mtbid 672 1  |-  ( A  e.  NN  ->  -.  2  ||  ( A  / 
( 2 ^ ( iota_ z  e.  NN0  (
( 2 ^ z
)  ||  A  /\  -.  ( 2 ^ (
z  +  1 ) )  ||  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    =/= wne 2347   E!wreu 2457   class class class wbr 4003   iota_crio 5829  (class class class)co 5874   CCcc 7808   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815    / cdiv 8628   NNcn 8918   2c2 8969   NN0cn0 9175   ZZcz 9252   ^cexp 10518    || cdvds 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-dvds 11794
This theorem is referenced by:  oddpwdclemdc  12172
  Copyright terms: Public domain W3C validator