Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bcval5 | Unicode version |
Description: Write out the top and bottom parts of the binomial coefficient explicitly. In this form, it is valid even for , although it is no longer valid for nonpositive . (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
Ref | Expression |
---|---|
bcval5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcval2 10663 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | simprl 521 | . . . . . . . . 9 | |
4 | simprr 522 | . . . . . . . . 9 | |
5 | 3, 4 | mulcld 7919 | . . . . . . . 8 |
6 | simpr1 993 | . . . . . . . . 9 | |
7 | simpr2 994 | . . . . . . . . 9 | |
8 | simpr3 995 | . . . . . . . . 9 | |
9 | 6, 7, 8 | mulassd 7922 | . . . . . . . 8 |
10 | simpll 519 | . . . . . . . . . . . . 13 | |
11 | 10 | nn0zd 9311 | . . . . . . . . . . . 12 |
12 | simplr 520 | . . . . . . . . . . . . 13 | |
13 | 12 | nnzd 9312 | . . . . . . . . . . . 12 |
14 | 11, 13 | zsubcld 9318 | . . . . . . . . . . 11 |
15 | 14 | peano2zd 9316 | . . . . . . . . . 10 |
16 | 1red 7914 | . . . . . . . . . . . 12 | |
17 | 12 | nnred 8870 | . . . . . . . . . . . 12 |
18 | 10 | nn0red 9168 | . . . . . . . . . . . 12 |
19 | 12 | nnge1d 8900 | . . . . . . . . . . . 12 |
20 | 16, 17, 18, 19 | lesub2dd 8460 | . . . . . . . . . . 11 |
21 | 14 | zred 9313 | . . . . . . . . . . . 12 |
22 | leaddsub 8336 | . . . . . . . . . . . 12 | |
23 | 21, 16, 18, 22 | syl3anc 1228 | . . . . . . . . . . 11 |
24 | 20, 23 | mpbird 166 | . . . . . . . . . 10 |
25 | eluz2 9472 | . . . . . . . . . 10 | |
26 | 15, 11, 24, 25 | syl3anbrc 1171 | . . . . . . . . 9 |
27 | 26 | adantrr 471 | . . . . . . . 8 |
28 | simprr 522 | . . . . . . . . 9 | |
29 | nnuz 9501 | . . . . . . . . 9 | |
30 | 28, 29 | eleqtrdi 2259 | . . . . . . . 8 |
31 | fvi 5543 | . . . . . . . . . 10 | |
32 | 31 | elv 2730 | . . . . . . . . 9 |
33 | eluzelcn 9477 | . . . . . . . . . 10 | |
34 | 33 | adantl 275 | . . . . . . . . 9 |
35 | 32, 34 | eqeltrid 2253 | . . . . . . . 8 |
36 | 5, 9, 27, 30, 35 | seq3split 10414 | . . . . . . 7 |
37 | elfzuz3 9957 | . . . . . . . . . . 11 | |
38 | 37 | adantl 275 | . . . . . . . . . 10 |
39 | eluznn 9538 | . . . . . . . . . 10 | |
40 | 12, 38, 39 | syl2anc 409 | . . . . . . . . 9 |
41 | 40 | adantrr 471 | . . . . . . . 8 |
42 | facnn 10640 | . . . . . . . 8 | |
43 | 41, 42 | syl 14 | . . . . . . 7 |
44 | facnn 10640 | . . . . . . . . 9 | |
45 | 28, 44 | syl 14 | . . . . . . . 8 |
46 | 45 | oveq1d 5857 | . . . . . . 7 |
47 | 36, 43, 46 | 3eqtr4d 2208 | . . . . . 6 |
48 | 47 | expr 373 | . . . . 5 |
49 | 10 | faccld 10649 | . . . . . . . . 9 |
50 | 49 | nncnd 8871 | . . . . . . . 8 |
51 | 50 | mulid2d 7917 | . . . . . . 7 |
52 | 40, 42 | syl 14 | . . . . . . . 8 |
53 | 52 | oveq2d 5858 | . . . . . . 7 |
54 | 51, 53 | eqtr3d 2200 | . . . . . 6 |
55 | fveq2 5486 | . . . . . . . . 9 | |
56 | fac0 10641 | . . . . . . . . 9 | |
57 | 55, 56 | eqtrdi 2215 | . . . . . . . 8 |
58 | oveq1 5849 | . . . . . . . . . . 11 | |
59 | 0p1e1 8971 | . . . . . . . . . . 11 | |
60 | 58, 59 | eqtrdi 2215 | . . . . . . . . . 10 |
61 | 60 | seqeq1d 10386 | . . . . . . . . 9 |
62 | 61 | fveq1d 5488 | . . . . . . . 8 |
63 | 57, 62 | oveq12d 5860 | . . . . . . 7 |
64 | 63 | eqeq2d 2177 | . . . . . 6 |
65 | 54, 64 | syl5ibrcom 156 | . . . . 5 |
66 | fznn0sub 9992 | . . . . . . 7 | |
67 | 66 | adantl 275 | . . . . . 6 |
68 | elnn0 9116 | . . . . . 6 | |
69 | 67, 68 | sylib 121 | . . . . 5 |
70 | 48, 65, 69 | mpjaod 708 | . . . 4 |
71 | 70 | oveq1d 5857 | . . 3 |
72 | eqid 2165 | . . . . . 6 | |
73 | fvi 5543 | . . . . . . . 8 | |
74 | 73 | elv 2730 | . . . . . . 7 |
75 | eluzelcn 9477 | . . . . . . . 8 | |
76 | 75 | adantl 275 | . . . . . . 7 |
77 | 74, 76 | eqeltrid 2253 | . . . . . 6 |
78 | mulcl 7880 | . . . . . . 7 | |
79 | 78 | adantl 275 | . . . . . 6 |
80 | 72, 15, 77, 79 | seqf 10396 | . . . . 5 |
81 | 80, 26 | ffvelrnd 5621 | . . . 4 |
82 | 12 | nnnn0d 9167 | . . . . . 6 |
83 | 82 | faccld 10649 | . . . . 5 |
84 | 83 | nncnd 8871 | . . . 4 |
85 | 67 | faccld 10649 | . . . . 5 |
86 | 85 | nncnd 8871 | . . . 4 |
87 | 83 | nnap0d 8903 | . . . 4 # |
88 | 85 | nnap0d 8903 | . . . 4 # |
89 | 81, 84, 86, 87, 88 | divcanap5d 8713 | . . 3 |
90 | 2, 71, 89 | 3eqtrd 2202 | . 2 |
91 | simplr 520 | . . . . . . 7 | |
92 | 91 | nnnn0d 9167 | . . . . . 6 |
93 | 92 | faccld 10649 | . . . . 5 |
94 | 93 | nncnd 8871 | . . . 4 |
95 | 93 | nnap0d 8903 | . . . 4 # |
96 | 94, 95 | div0apd 8683 | . . 3 |
97 | mulcl 7880 | . . . . . 6 | |
98 | 97 | adantl 275 | . . . . 5 |
99 | eluzelcn 9477 | . . . . . . 7 | |
100 | 99 | adantl 275 | . . . . . 6 |
101 | 32, 100 | eqeltrid 2253 | . . . . 5 |
102 | simpr 109 | . . . . . 6 | |
103 | 102 | mul02d 8290 | . . . . 5 |
104 | 102 | mul01d 8291 | . . . . 5 |
105 | simpr 109 | . . . . . . . . 9 | |
106 | nn0uz 9500 | . . . . . . . . . . . 12 | |
107 | 92, 106 | eleqtrdi 2259 | . . . . . . . . . . 11 |
108 | simpll 519 | . . . . . . . . . . . 12 | |
109 | 108 | nn0zd 9311 | . . . . . . . . . . 11 |
110 | elfz5 9952 | . . . . . . . . . . 11 | |
111 | 107, 109, 110 | syl2anc 409 | . . . . . . . . . 10 |
112 | nn0re 9123 | . . . . . . . . . . . 12 | |
113 | 112 | ad2antrr 480 | . . . . . . . . . . 11 |
114 | nnre 8864 | . . . . . . . . . . . 12 | |
115 | 114 | ad2antlr 481 | . . . . . . . . . . 11 |
116 | 113, 115 | subge0d 8433 | . . . . . . . . . 10 |
117 | 111, 116 | bitr4d 190 | . . . . . . . . 9 |
118 | 105, 117 | mtbid 662 | . . . . . . . 8 |
119 | simpl 108 | . . . . . . . . . . . 12 | |
120 | 119 | nn0zd 9311 | . . . . . . . . . . 11 |
121 | simpr 109 | . . . . . . . . . . . 12 | |
122 | 121 | nnzd 9312 | . . . . . . . . . . 11 |
123 | 120, 122 | zsubcld 9318 | . . . . . . . . . 10 |
124 | 123 | adantr 274 | . . . . . . . . 9 |
125 | 0z 9202 | . . . . . . . . 9 | |
126 | zltnle 9237 | . . . . . . . . 9 | |
127 | 124, 125, 126 | sylancl 410 | . . . . . . . 8 |
128 | 118, 127 | mpbird 166 | . . . . . . 7 |
129 | zltp1le 9245 | . . . . . . . 8 | |
130 | 124, 125, 129 | sylancl 410 | . . . . . . 7 |
131 | 128, 130 | mpbid 146 | . . . . . 6 |
132 | nn0ge0 9139 | . . . . . . 7 | |
133 | 132 | ad2antrr 480 | . . . . . 6 |
134 | 0zd 9203 | . . . . . . 7 | |
135 | 124 | peano2zd 9316 | . . . . . . 7 |
136 | elfz 9950 | . . . . . . 7 | |
137 | 134, 135, 109, 136 | syl3anc 1228 | . . . . . 6 |
138 | 131, 133, 137 | mpbir2and 934 | . . . . 5 |
139 | 0cn 7891 | . . . . . 6 | |
140 | fvi 5543 | . . . . . 6 | |
141 | 139, 140 | mp1i 10 | . . . . 5 |
142 | 98, 101, 103, 104, 138, 141 | seq3z 10446 | . . . 4 |
143 | 142 | oveq1d 5857 | . . 3 |
144 | nnz 9210 | . . . . 5 | |
145 | bcval3 10664 | . . . . 5 | |
146 | 144, 145 | syl3an2 1262 | . . . 4 |
147 | 146 | 3expa 1193 | . . 3 |
148 | 96, 143, 147 | 3eqtr4rd 2209 | . 2 |
149 | 0zd 9203 | . . . 4 | |
150 | fzdcel 9975 | . . . 4 DECID | |
151 | 122, 149, 120, 150 | syl3anc 1228 | . . 3 DECID |
152 | exmiddc 826 | . . 3 DECID | |
153 | 151, 152 | syl 14 | . 2 |
154 | 90, 148, 153 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 cid 4266 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 cdiv 8568 cn 8857 cn0 9114 cz 9191 cuz 9466 cfz 9944 cseq 10380 cfa 10638 cbc 10660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-fz 9945 df-seqfrec 10381 df-fac 10639 df-bc 10661 |
This theorem is referenced by: bcn2 10677 |
Copyright terms: Public domain | W3C validator |