| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcval5 | Unicode version | ||
| Description: Write out the top and
bottom parts of the binomial coefficient
|
| Ref | Expression |
|---|---|
| bcval5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 10897 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | simprl 529 |
. . . . . . . . 9
| |
| 4 | simprr 531 |
. . . . . . . . 9
| |
| 5 | 3, 4 | mulcld 8095 |
. . . . . . . 8
|
| 6 | simpr1 1006 |
. . . . . . . . 9
| |
| 7 | simpr2 1007 |
. . . . . . . . 9
| |
| 8 | simpr3 1008 |
. . . . . . . . 9
| |
| 9 | 6, 7, 8 | mulassd 8098 |
. . . . . . . 8
|
| 10 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | nn0zd 9495 |
. . . . . . . . . . . 12
|
| 12 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | nnzd 9496 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | zsubcld 9502 |
. . . . . . . . . . 11
|
| 15 | 14 | peano2zd 9500 |
. . . . . . . . . 10
|
| 16 | 1red 8089 |
. . . . . . . . . . . 12
| |
| 17 | 12 | nnred 9051 |
. . . . . . . . . . . 12
|
| 18 | 10 | nn0red 9351 |
. . . . . . . . . . . 12
|
| 19 | 12 | nnge1d 9081 |
. . . . . . . . . . . 12
|
| 20 | 16, 17, 18, 19 | lesub2dd 8637 |
. . . . . . . . . . 11
|
| 21 | 14 | zred 9497 |
. . . . . . . . . . . 12
|
| 22 | leaddsub 8513 |
. . . . . . . . . . . 12
| |
| 23 | 21, 16, 18, 22 | syl3anc 1250 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | mpbird 167 |
. . . . . . . . . 10
|
| 25 | eluz2 9656 |
. . . . . . . . . 10
| |
| 26 | 15, 11, 24, 25 | syl3anbrc 1184 |
. . . . . . . . 9
|
| 27 | 26 | adantrr 479 |
. . . . . . . 8
|
| 28 | simprr 531 |
. . . . . . . . 9
| |
| 29 | nnuz 9686 |
. . . . . . . . 9
| |
| 30 | 28, 29 | eleqtrdi 2298 |
. . . . . . . 8
|
| 31 | fvi 5638 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2776 |
. . . . . . . . 9
|
| 33 | eluzelcn 9661 |
. . . . . . . . . 10
| |
| 34 | 33 | adantl 277 |
. . . . . . . . 9
|
| 35 | 32, 34 | eqeltrid 2292 |
. . . . . . . 8
|
| 36 | 5, 9, 27, 30, 35 | seq3split 10635 |
. . . . . . 7
|
| 37 | elfzuz3 10146 |
. . . . . . . . . . 11
| |
| 38 | 37 | adantl 277 |
. . . . . . . . . 10
|
| 39 | eluznn 9723 |
. . . . . . . . . 10
| |
| 40 | 12, 38, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | adantrr 479 |
. . . . . . . 8
|
| 42 | facnn 10874 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | facnn 10874 |
. . . . . . . . 9
| |
| 45 | 28, 44 | syl 14 |
. . . . . . . 8
|
| 46 | 45 | oveq1d 5961 |
. . . . . . 7
|
| 47 | 36, 43, 46 | 3eqtr4d 2248 |
. . . . . 6
|
| 48 | 47 | expr 375 |
. . . . 5
|
| 49 | 10 | faccld 10883 |
. . . . . . . . 9
|
| 50 | 49 | nncnd 9052 |
. . . . . . . 8
|
| 51 | 50 | mulid2d 8093 |
. . . . . . 7
|
| 52 | 40, 42 | syl 14 |
. . . . . . . 8
|
| 53 | 52 | oveq2d 5962 |
. . . . . . 7
|
| 54 | 51, 53 | eqtr3d 2240 |
. . . . . 6
|
| 55 | fveq2 5578 |
. . . . . . . . 9
| |
| 56 | fac0 10875 |
. . . . . . . . 9
| |
| 57 | 55, 56 | eqtrdi 2254 |
. . . . . . . 8
|
| 58 | oveq1 5953 |
. . . . . . . . . . 11
| |
| 59 | 0p1e1 9152 |
. . . . . . . . . . 11
| |
| 60 | 58, 59 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 61 | 60 | seqeq1d 10600 |
. . . . . . . . 9
|
| 62 | 61 | fveq1d 5580 |
. . . . . . . 8
|
| 63 | 57, 62 | oveq12d 5964 |
. . . . . . 7
|
| 64 | 63 | eqeq2d 2217 |
. . . . . 6
|
| 65 | 54, 64 | syl5ibrcom 157 |
. . . . 5
|
| 66 | fznn0sub 10181 |
. . . . . . 7
| |
| 67 | 66 | adantl 277 |
. . . . . 6
|
| 68 | elnn0 9299 |
. . . . . 6
| |
| 69 | 67, 68 | sylib 122 |
. . . . 5
|
| 70 | 48, 65, 69 | mpjaod 720 |
. . . 4
|
| 71 | 70 | oveq1d 5961 |
. . 3
|
| 72 | eqid 2205 |
. . . . . 6
| |
| 73 | fvi 5638 |
. . . . . . . 8
| |
| 74 | 73 | elv 2776 |
. . . . . . 7
|
| 75 | eluzelcn 9661 |
. . . . . . . 8
| |
| 76 | 75 | adantl 277 |
. . . . . . 7
|
| 77 | 74, 76 | eqeltrid 2292 |
. . . . . 6
|
| 78 | mulcl 8054 |
. . . . . . 7
| |
| 79 | 78 | adantl 277 |
. . . . . 6
|
| 80 | 72, 15, 77, 79 | seqf 10611 |
. . . . 5
|
| 81 | 80, 26 | ffvelcdmd 5718 |
. . . 4
|
| 82 | 12 | nnnn0d 9350 |
. . . . . 6
|
| 83 | 82 | faccld 10883 |
. . . . 5
|
| 84 | 83 | nncnd 9052 |
. . . 4
|
| 85 | 67 | faccld 10883 |
. . . . 5
|
| 86 | 85 | nncnd 9052 |
. . . 4
|
| 87 | 83 | nnap0d 9084 |
. . . 4
|
| 88 | 85 | nnap0d 9084 |
. . . 4
|
| 89 | 81, 84, 86, 87, 88 | divcanap5d 8892 |
. . 3
|
| 90 | 2, 71, 89 | 3eqtrd 2242 |
. 2
|
| 91 | simplr 528 |
. . . . . . 7
| |
| 92 | 91 | nnnn0d 9350 |
. . . . . 6
|
| 93 | 92 | faccld 10883 |
. . . . 5
|
| 94 | 93 | nncnd 9052 |
. . . 4
|
| 95 | 93 | nnap0d 9084 |
. . . 4
|
| 96 | 94, 95 | div0apd 8862 |
. . 3
|
| 97 | mulcl 8054 |
. . . . . 6
| |
| 98 | 97 | adantl 277 |
. . . . 5
|
| 99 | eluzelcn 9661 |
. . . . . . 7
| |
| 100 | 99 | adantl 277 |
. . . . . 6
|
| 101 | 32, 100 | eqeltrid 2292 |
. . . . 5
|
| 102 | simpr 110 |
. . . . . 6
| |
| 103 | 102 | mul02d 8466 |
. . . . 5
|
| 104 | 102 | mul01d 8467 |
. . . . 5
|
| 105 | simpr 110 |
. . . . . . . . 9
| |
| 106 | nn0uz 9685 |
. . . . . . . . . . . 12
| |
| 107 | 92, 106 | eleqtrdi 2298 |
. . . . . . . . . . 11
|
| 108 | simpll 527 |
. . . . . . . . . . . 12
| |
| 109 | 108 | nn0zd 9495 |
. . . . . . . . . . 11
|
| 110 | elfz5 10141 |
. . . . . . . . . . 11
| |
| 111 | 107, 109, 110 | syl2anc 411 |
. . . . . . . . . 10
|
| 112 | nn0re 9306 |
. . . . . . . . . . . 12
| |
| 113 | 112 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 114 | nnre 9045 |
. . . . . . . . . . . 12
| |
| 115 | 114 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 116 | 113, 115 | subge0d 8610 |
. . . . . . . . . 10
|
| 117 | 111, 116 | bitr4d 191 |
. . . . . . . . 9
|
| 118 | 105, 117 | mtbid 674 |
. . . . . . . 8
|
| 119 | simpl 109 |
. . . . . . . . . . . 12
| |
| 120 | 119 | nn0zd 9495 |
. . . . . . . . . . 11
|
| 121 | simpr 110 |
. . . . . . . . . . . 12
| |
| 122 | 121 | nnzd 9496 |
. . . . . . . . . . 11
|
| 123 | 120, 122 | zsubcld 9502 |
. . . . . . . . . 10
|
| 124 | 123 | adantr 276 |
. . . . . . . . 9
|
| 125 | 0z 9385 |
. . . . . . . . 9
| |
| 126 | zltnle 9420 |
. . . . . . . . 9
| |
| 127 | 124, 125, 126 | sylancl 413 |
. . . . . . . 8
|
| 128 | 118, 127 | mpbird 167 |
. . . . . . 7
|
| 129 | zltp1le 9429 |
. . . . . . . 8
| |
| 130 | 124, 125, 129 | sylancl 413 |
. . . . . . 7
|
| 131 | 128, 130 | mpbid 147 |
. . . . . 6
|
| 132 | nn0ge0 9322 |
. . . . . . 7
| |
| 133 | 132 | ad2antrr 488 |
. . . . . 6
|
| 134 | 0zd 9386 |
. . . . . . 7
| |
| 135 | 124 | peano2zd 9500 |
. . . . . . 7
|
| 136 | elfz 10138 |
. . . . . . 7
| |
| 137 | 134, 135, 109, 136 | syl3anc 1250 |
. . . . . 6
|
| 138 | 131, 133, 137 | mpbir2and 947 |
. . . . 5
|
| 139 | 0cn 8066 |
. . . . . 6
| |
| 140 | fvi 5638 |
. . . . . 6
| |
| 141 | 139, 140 | mp1i 10 |
. . . . 5
|
| 142 | 98, 101, 103, 104, 138, 141 | seq3z 10675 |
. . . 4
|
| 143 | 142 | oveq1d 5961 |
. . 3
|
| 144 | nnz 9393 |
. . . . 5
| |
| 145 | bcval3 10898 |
. . . . 5
| |
| 146 | 144, 145 | syl3an2 1284 |
. . . 4
|
| 147 | 146 | 3expa 1206 |
. . 3
|
| 148 | 96, 143, 147 | 3eqtr4rd 2249 |
. 2
|
| 149 | 0zd 9386 |
. . . 4
| |
| 150 | fzdcel 10164 |
. . . 4
| |
| 151 | 122, 149, 120, 150 | syl3anc 1250 |
. . 3
|
| 152 | exmiddc 838 |
. . 3
| |
| 153 | 151, 152 | syl 14 |
. 2
|
| 154 | 90, 148, 153 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-fz 10133 df-seqfrec 10595 df-fac 10873 df-bc 10895 |
| This theorem is referenced by: bcn2 10911 |
| Copyright terms: Public domain | W3C validator |