| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcval5 | Unicode version | ||
| Description: Write out the top and
bottom parts of the binomial coefficient
|
| Ref | Expression |
|---|---|
| bcval5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 10859 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | simprl 529 |
. . . . . . . . 9
| |
| 4 | simprr 531 |
. . . . . . . . 9
| |
| 5 | 3, 4 | mulcld 8064 |
. . . . . . . 8
|
| 6 | simpr1 1005 |
. . . . . . . . 9
| |
| 7 | simpr2 1006 |
. . . . . . . . 9
| |
| 8 | simpr3 1007 |
. . . . . . . . 9
| |
| 9 | 6, 7, 8 | mulassd 8067 |
. . . . . . . 8
|
| 10 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | nn0zd 9463 |
. . . . . . . . . . . 12
|
| 12 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | nnzd 9464 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | zsubcld 9470 |
. . . . . . . . . . 11
|
| 15 | 14 | peano2zd 9468 |
. . . . . . . . . 10
|
| 16 | 1red 8058 |
. . . . . . . . . . . 12
| |
| 17 | 12 | nnred 9020 |
. . . . . . . . . . . 12
|
| 18 | 10 | nn0red 9320 |
. . . . . . . . . . . 12
|
| 19 | 12 | nnge1d 9050 |
. . . . . . . . . . . 12
|
| 20 | 16, 17, 18, 19 | lesub2dd 8606 |
. . . . . . . . . . 11
|
| 21 | 14 | zred 9465 |
. . . . . . . . . . . 12
|
| 22 | leaddsub 8482 |
. . . . . . . . . . . 12
| |
| 23 | 21, 16, 18, 22 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | mpbird 167 |
. . . . . . . . . 10
|
| 25 | eluz2 9624 |
. . . . . . . . . 10
| |
| 26 | 15, 11, 24, 25 | syl3anbrc 1183 |
. . . . . . . . 9
|
| 27 | 26 | adantrr 479 |
. . . . . . . 8
|
| 28 | simprr 531 |
. . . . . . . . 9
| |
| 29 | nnuz 9654 |
. . . . . . . . 9
| |
| 30 | 28, 29 | eleqtrdi 2289 |
. . . . . . . 8
|
| 31 | fvi 5621 |
. . . . . . . . . 10
| |
| 32 | 31 | elv 2767 |
. . . . . . . . 9
|
| 33 | eluzelcn 9629 |
. . . . . . . . . 10
| |
| 34 | 33 | adantl 277 |
. . . . . . . . 9
|
| 35 | 32, 34 | eqeltrid 2283 |
. . . . . . . 8
|
| 36 | 5, 9, 27, 30, 35 | seq3split 10597 |
. . . . . . 7
|
| 37 | elfzuz3 10114 |
. . . . . . . . . . 11
| |
| 38 | 37 | adantl 277 |
. . . . . . . . . 10
|
| 39 | eluznn 9691 |
. . . . . . . . . 10
| |
| 40 | 12, 38, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | adantrr 479 |
. . . . . . . 8
|
| 42 | facnn 10836 |
. . . . . . . 8
| |
| 43 | 41, 42 | syl 14 |
. . . . . . 7
|
| 44 | facnn 10836 |
. . . . . . . . 9
| |
| 45 | 28, 44 | syl 14 |
. . . . . . . 8
|
| 46 | 45 | oveq1d 5940 |
. . . . . . 7
|
| 47 | 36, 43, 46 | 3eqtr4d 2239 |
. . . . . 6
|
| 48 | 47 | expr 375 |
. . . . 5
|
| 49 | 10 | faccld 10845 |
. . . . . . . . 9
|
| 50 | 49 | nncnd 9021 |
. . . . . . . 8
|
| 51 | 50 | mulid2d 8062 |
. . . . . . 7
|
| 52 | 40, 42 | syl 14 |
. . . . . . . 8
|
| 53 | 52 | oveq2d 5941 |
. . . . . . 7
|
| 54 | 51, 53 | eqtr3d 2231 |
. . . . . 6
|
| 55 | fveq2 5561 |
. . . . . . . . 9
| |
| 56 | fac0 10837 |
. . . . . . . . 9
| |
| 57 | 55, 56 | eqtrdi 2245 |
. . . . . . . 8
|
| 58 | oveq1 5932 |
. . . . . . . . . . 11
| |
| 59 | 0p1e1 9121 |
. . . . . . . . . . 11
| |
| 60 | 58, 59 | eqtrdi 2245 |
. . . . . . . . . 10
|
| 61 | 60 | seqeq1d 10562 |
. . . . . . . . 9
|
| 62 | 61 | fveq1d 5563 |
. . . . . . . 8
|
| 63 | 57, 62 | oveq12d 5943 |
. . . . . . 7
|
| 64 | 63 | eqeq2d 2208 |
. . . . . 6
|
| 65 | 54, 64 | syl5ibrcom 157 |
. . . . 5
|
| 66 | fznn0sub 10149 |
. . . . . . 7
| |
| 67 | 66 | adantl 277 |
. . . . . 6
|
| 68 | elnn0 9268 |
. . . . . 6
| |
| 69 | 67, 68 | sylib 122 |
. . . . 5
|
| 70 | 48, 65, 69 | mpjaod 719 |
. . . 4
|
| 71 | 70 | oveq1d 5940 |
. . 3
|
| 72 | eqid 2196 |
. . . . . 6
| |
| 73 | fvi 5621 |
. . . . . . . 8
| |
| 74 | 73 | elv 2767 |
. . . . . . 7
|
| 75 | eluzelcn 9629 |
. . . . . . . 8
| |
| 76 | 75 | adantl 277 |
. . . . . . 7
|
| 77 | 74, 76 | eqeltrid 2283 |
. . . . . 6
|
| 78 | mulcl 8023 |
. . . . . . 7
| |
| 79 | 78 | adantl 277 |
. . . . . 6
|
| 80 | 72, 15, 77, 79 | seqf 10573 |
. . . . 5
|
| 81 | 80, 26 | ffvelcdmd 5701 |
. . . 4
|
| 82 | 12 | nnnn0d 9319 |
. . . . . 6
|
| 83 | 82 | faccld 10845 |
. . . . 5
|
| 84 | 83 | nncnd 9021 |
. . . 4
|
| 85 | 67 | faccld 10845 |
. . . . 5
|
| 86 | 85 | nncnd 9021 |
. . . 4
|
| 87 | 83 | nnap0d 9053 |
. . . 4
|
| 88 | 85 | nnap0d 9053 |
. . . 4
|
| 89 | 81, 84, 86, 87, 88 | divcanap5d 8861 |
. . 3
|
| 90 | 2, 71, 89 | 3eqtrd 2233 |
. 2
|
| 91 | simplr 528 |
. . . . . . 7
| |
| 92 | 91 | nnnn0d 9319 |
. . . . . 6
|
| 93 | 92 | faccld 10845 |
. . . . 5
|
| 94 | 93 | nncnd 9021 |
. . . 4
|
| 95 | 93 | nnap0d 9053 |
. . . 4
|
| 96 | 94, 95 | div0apd 8831 |
. . 3
|
| 97 | mulcl 8023 |
. . . . . 6
| |
| 98 | 97 | adantl 277 |
. . . . 5
|
| 99 | eluzelcn 9629 |
. . . . . . 7
| |
| 100 | 99 | adantl 277 |
. . . . . 6
|
| 101 | 32, 100 | eqeltrid 2283 |
. . . . 5
|
| 102 | simpr 110 |
. . . . . 6
| |
| 103 | 102 | mul02d 8435 |
. . . . 5
|
| 104 | 102 | mul01d 8436 |
. . . . 5
|
| 105 | simpr 110 |
. . . . . . . . 9
| |
| 106 | nn0uz 9653 |
. . . . . . . . . . . 12
| |
| 107 | 92, 106 | eleqtrdi 2289 |
. . . . . . . . . . 11
|
| 108 | simpll 527 |
. . . . . . . . . . . 12
| |
| 109 | 108 | nn0zd 9463 |
. . . . . . . . . . 11
|
| 110 | elfz5 10109 |
. . . . . . . . . . 11
| |
| 111 | 107, 109, 110 | syl2anc 411 |
. . . . . . . . . 10
|
| 112 | nn0re 9275 |
. . . . . . . . . . . 12
| |
| 113 | 112 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 114 | nnre 9014 |
. . . . . . . . . . . 12
| |
| 115 | 114 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 116 | 113, 115 | subge0d 8579 |
. . . . . . . . . 10
|
| 117 | 111, 116 | bitr4d 191 |
. . . . . . . . 9
|
| 118 | 105, 117 | mtbid 673 |
. . . . . . . 8
|
| 119 | simpl 109 |
. . . . . . . . . . . 12
| |
| 120 | 119 | nn0zd 9463 |
. . . . . . . . . . 11
|
| 121 | simpr 110 |
. . . . . . . . . . . 12
| |
| 122 | 121 | nnzd 9464 |
. . . . . . . . . . 11
|
| 123 | 120, 122 | zsubcld 9470 |
. . . . . . . . . 10
|
| 124 | 123 | adantr 276 |
. . . . . . . . 9
|
| 125 | 0z 9354 |
. . . . . . . . 9
| |
| 126 | zltnle 9389 |
. . . . . . . . 9
| |
| 127 | 124, 125, 126 | sylancl 413 |
. . . . . . . 8
|
| 128 | 118, 127 | mpbird 167 |
. . . . . . 7
|
| 129 | zltp1le 9397 |
. . . . . . . 8
| |
| 130 | 124, 125, 129 | sylancl 413 |
. . . . . . 7
|
| 131 | 128, 130 | mpbid 147 |
. . . . . 6
|
| 132 | nn0ge0 9291 |
. . . . . . 7
| |
| 133 | 132 | ad2antrr 488 |
. . . . . 6
|
| 134 | 0zd 9355 |
. . . . . . 7
| |
| 135 | 124 | peano2zd 9468 |
. . . . . . 7
|
| 136 | elfz 10106 |
. . . . . . 7
| |
| 137 | 134, 135, 109, 136 | syl3anc 1249 |
. . . . . 6
|
| 138 | 131, 133, 137 | mpbir2and 946 |
. . . . 5
|
| 139 | 0cn 8035 |
. . . . . 6
| |
| 140 | fvi 5621 |
. . . . . 6
| |
| 141 | 139, 140 | mp1i 10 |
. . . . 5
|
| 142 | 98, 101, 103, 104, 138, 141 | seq3z 10637 |
. . . 4
|
| 143 | 142 | oveq1d 5940 |
. . 3
|
| 144 | nnz 9362 |
. . . . 5
| |
| 145 | bcval3 10860 |
. . . . 5
| |
| 146 | 144, 145 | syl3an2 1283 |
. . . 4
|
| 147 | 146 | 3expa 1205 |
. . 3
|
| 148 | 96, 143, 147 | 3eqtr4rd 2240 |
. 2
|
| 149 | 0zd 9355 |
. . . 4
| |
| 150 | fzdcel 10132 |
. . . 4
| |
| 151 | 122, 149, 120, 150 | syl3anc 1249 |
. . 3
|
| 152 | exmiddc 837 |
. . 3
| |
| 153 | 151, 152 | syl 14 |
. 2
|
| 154 | 90, 148, 153 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-fz 10101 df-seqfrec 10557 df-fac 10835 df-bc 10857 |
| This theorem is referenced by: bcn2 10873 |
| Copyright terms: Public domain | W3C validator |