Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bcval5 | Unicode version |
Description: Write out the top and bottom parts of the binomial coefficient explicitly. In this form, it is valid even for , although it is no longer valid for nonpositive . (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
Ref | Expression |
---|---|
bcval5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcval2 10671 | . . . 4 | |
2 | 1 | adantl 275 | . . 3 |
3 | simprl 526 | . . . . . . . . 9 | |
4 | simprr 527 | . . . . . . . . 9 | |
5 | 3, 4 | mulcld 7927 | . . . . . . . 8 |
6 | simpr1 998 | . . . . . . . . 9 | |
7 | simpr2 999 | . . . . . . . . 9 | |
8 | simpr3 1000 | . . . . . . . . 9 | |
9 | 6, 7, 8 | mulassd 7930 | . . . . . . . 8 |
10 | simpll 524 | . . . . . . . . . . . . 13 | |
11 | 10 | nn0zd 9319 | . . . . . . . . . . . 12 |
12 | simplr 525 | . . . . . . . . . . . . 13 | |
13 | 12 | nnzd 9320 | . . . . . . . . . . . 12 |
14 | 11, 13 | zsubcld 9326 | . . . . . . . . . . 11 |
15 | 14 | peano2zd 9324 | . . . . . . . . . 10 |
16 | 1red 7922 | . . . . . . . . . . . 12 | |
17 | 12 | nnred 8878 | . . . . . . . . . . . 12 |
18 | 10 | nn0red 9176 | . . . . . . . . . . . 12 |
19 | 12 | nnge1d 8908 | . . . . . . . . . . . 12 |
20 | 16, 17, 18, 19 | lesub2dd 8468 | . . . . . . . . . . 11 |
21 | 14 | zred 9321 | . . . . . . . . . . . 12 |
22 | leaddsub 8344 | . . . . . . . . . . . 12 | |
23 | 21, 16, 18, 22 | syl3anc 1233 | . . . . . . . . . . 11 |
24 | 20, 23 | mpbird 166 | . . . . . . . . . 10 |
25 | eluz2 9480 | . . . . . . . . . 10 | |
26 | 15, 11, 24, 25 | syl3anbrc 1176 | . . . . . . . . 9 |
27 | 26 | adantrr 476 | . . . . . . . 8 |
28 | simprr 527 | . . . . . . . . 9 | |
29 | nnuz 9509 | . . . . . . . . 9 | |
30 | 28, 29 | eleqtrdi 2263 | . . . . . . . 8 |
31 | fvi 5551 | . . . . . . . . . 10 | |
32 | 31 | elv 2734 | . . . . . . . . 9 |
33 | eluzelcn 9485 | . . . . . . . . . 10 | |
34 | 33 | adantl 275 | . . . . . . . . 9 |
35 | 32, 34 | eqeltrid 2257 | . . . . . . . 8 |
36 | 5, 9, 27, 30, 35 | seq3split 10422 | . . . . . . 7 |
37 | elfzuz3 9965 | . . . . . . . . . . 11 | |
38 | 37 | adantl 275 | . . . . . . . . . 10 |
39 | eluznn 9546 | . . . . . . . . . 10 | |
40 | 12, 38, 39 | syl2anc 409 | . . . . . . . . 9 |
41 | 40 | adantrr 476 | . . . . . . . 8 |
42 | facnn 10648 | . . . . . . . 8 | |
43 | 41, 42 | syl 14 | . . . . . . 7 |
44 | facnn 10648 | . . . . . . . . 9 | |
45 | 28, 44 | syl 14 | . . . . . . . 8 |
46 | 45 | oveq1d 5865 | . . . . . . 7 |
47 | 36, 43, 46 | 3eqtr4d 2213 | . . . . . 6 |
48 | 47 | expr 373 | . . . . 5 |
49 | 10 | faccld 10657 | . . . . . . . . 9 |
50 | 49 | nncnd 8879 | . . . . . . . 8 |
51 | 50 | mulid2d 7925 | . . . . . . 7 |
52 | 40, 42 | syl 14 | . . . . . . . 8 |
53 | 52 | oveq2d 5866 | . . . . . . 7 |
54 | 51, 53 | eqtr3d 2205 | . . . . . 6 |
55 | fveq2 5494 | . . . . . . . . 9 | |
56 | fac0 10649 | . . . . . . . . 9 | |
57 | 55, 56 | eqtrdi 2219 | . . . . . . . 8 |
58 | oveq1 5857 | . . . . . . . . . . 11 | |
59 | 0p1e1 8979 | . . . . . . . . . . 11 | |
60 | 58, 59 | eqtrdi 2219 | . . . . . . . . . 10 |
61 | 60 | seqeq1d 10394 | . . . . . . . . 9 |
62 | 61 | fveq1d 5496 | . . . . . . . 8 |
63 | 57, 62 | oveq12d 5868 | . . . . . . 7 |
64 | 63 | eqeq2d 2182 | . . . . . 6 |
65 | 54, 64 | syl5ibrcom 156 | . . . . 5 |
66 | fznn0sub 10000 | . . . . . . 7 | |
67 | 66 | adantl 275 | . . . . . 6 |
68 | elnn0 9124 | . . . . . 6 | |
69 | 67, 68 | sylib 121 | . . . . 5 |
70 | 48, 65, 69 | mpjaod 713 | . . . 4 |
71 | 70 | oveq1d 5865 | . . 3 |
72 | eqid 2170 | . . . . . 6 | |
73 | fvi 5551 | . . . . . . . 8 | |
74 | 73 | elv 2734 | . . . . . . 7 |
75 | eluzelcn 9485 | . . . . . . . 8 | |
76 | 75 | adantl 275 | . . . . . . 7 |
77 | 74, 76 | eqeltrid 2257 | . . . . . 6 |
78 | mulcl 7888 | . . . . . . 7 | |
79 | 78 | adantl 275 | . . . . . 6 |
80 | 72, 15, 77, 79 | seqf 10404 | . . . . 5 |
81 | 80, 26 | ffvelrnd 5629 | . . . 4 |
82 | 12 | nnnn0d 9175 | . . . . . 6 |
83 | 82 | faccld 10657 | . . . . 5 |
84 | 83 | nncnd 8879 | . . . 4 |
85 | 67 | faccld 10657 | . . . . 5 |
86 | 85 | nncnd 8879 | . . . 4 |
87 | 83 | nnap0d 8911 | . . . 4 # |
88 | 85 | nnap0d 8911 | . . . 4 # |
89 | 81, 84, 86, 87, 88 | divcanap5d 8721 | . . 3 |
90 | 2, 71, 89 | 3eqtrd 2207 | . 2 |
91 | simplr 525 | . . . . . . 7 | |
92 | 91 | nnnn0d 9175 | . . . . . 6 |
93 | 92 | faccld 10657 | . . . . 5 |
94 | 93 | nncnd 8879 | . . . 4 |
95 | 93 | nnap0d 8911 | . . . 4 # |
96 | 94, 95 | div0apd 8691 | . . 3 |
97 | mulcl 7888 | . . . . . 6 | |
98 | 97 | adantl 275 | . . . . 5 |
99 | eluzelcn 9485 | . . . . . . 7 | |
100 | 99 | adantl 275 | . . . . . 6 |
101 | 32, 100 | eqeltrid 2257 | . . . . 5 |
102 | simpr 109 | . . . . . 6 | |
103 | 102 | mul02d 8298 | . . . . 5 |
104 | 102 | mul01d 8299 | . . . . 5 |
105 | simpr 109 | . . . . . . . . 9 | |
106 | nn0uz 9508 | . . . . . . . . . . . 12 | |
107 | 92, 106 | eleqtrdi 2263 | . . . . . . . . . . 11 |
108 | simpll 524 | . . . . . . . . . . . 12 | |
109 | 108 | nn0zd 9319 | . . . . . . . . . . 11 |
110 | elfz5 9960 | . . . . . . . . . . 11 | |
111 | 107, 109, 110 | syl2anc 409 | . . . . . . . . . 10 |
112 | nn0re 9131 | . . . . . . . . . . . 12 | |
113 | 112 | ad2antrr 485 | . . . . . . . . . . 11 |
114 | nnre 8872 | . . . . . . . . . . . 12 | |
115 | 114 | ad2antlr 486 | . . . . . . . . . . 11 |
116 | 113, 115 | subge0d 8441 | . . . . . . . . . 10 |
117 | 111, 116 | bitr4d 190 | . . . . . . . . 9 |
118 | 105, 117 | mtbid 667 | . . . . . . . 8 |
119 | simpl 108 | . . . . . . . . . . . 12 | |
120 | 119 | nn0zd 9319 | . . . . . . . . . . 11 |
121 | simpr 109 | . . . . . . . . . . . 12 | |
122 | 121 | nnzd 9320 | . . . . . . . . . . 11 |
123 | 120, 122 | zsubcld 9326 | . . . . . . . . . 10 |
124 | 123 | adantr 274 | . . . . . . . . 9 |
125 | 0z 9210 | . . . . . . . . 9 | |
126 | zltnle 9245 | . . . . . . . . 9 | |
127 | 124, 125, 126 | sylancl 411 | . . . . . . . 8 |
128 | 118, 127 | mpbird 166 | . . . . . . 7 |
129 | zltp1le 9253 | . . . . . . . 8 | |
130 | 124, 125, 129 | sylancl 411 | . . . . . . 7 |
131 | 128, 130 | mpbid 146 | . . . . . 6 |
132 | nn0ge0 9147 | . . . . . . 7 | |
133 | 132 | ad2antrr 485 | . . . . . 6 |
134 | 0zd 9211 | . . . . . . 7 | |
135 | 124 | peano2zd 9324 | . . . . . . 7 |
136 | elfz 9958 | . . . . . . 7 | |
137 | 134, 135, 109, 136 | syl3anc 1233 | . . . . . 6 |
138 | 131, 133, 137 | mpbir2and 939 | . . . . 5 |
139 | 0cn 7899 | . . . . . 6 | |
140 | fvi 5551 | . . . . . 6 | |
141 | 139, 140 | mp1i 10 | . . . . 5 |
142 | 98, 101, 103, 104, 138, 141 | seq3z 10454 | . . . 4 |
143 | 142 | oveq1d 5865 | . . 3 |
144 | nnz 9218 | . . . . 5 | |
145 | bcval3 10672 | . . . . 5 | |
146 | 144, 145 | syl3an2 1267 | . . . 4 |
147 | 146 | 3expa 1198 | . . 3 |
148 | 96, 143, 147 | 3eqtr4rd 2214 | . 2 |
149 | 0zd 9211 | . . . 4 | |
150 | fzdcel 9983 | . . . 4 DECID | |
151 | 122, 149, 120, 150 | syl3anc 1233 | . . 3 DECID |
152 | exmiddc 831 | . . 3 DECID | |
153 | 151, 152 | syl 14 | . 2 |
154 | 90, 148, 153 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 cvv 2730 class class class wbr 3987 cid 4271 cfv 5196 (class class class)co 5850 cc 7759 cr 7760 cc0 7761 c1 7762 caddc 7764 cmul 7766 clt 7941 cle 7942 cmin 8077 cdiv 8576 cn 8865 cn0 9122 cz 9199 cuz 9474 cfz 9952 cseq 10388 cfa 10646 cbc 10668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-fz 9953 df-seqfrec 10389 df-fac 10647 df-bc 10669 |
This theorem is referenced by: bcn2 10685 |
Copyright terms: Public domain | W3C validator |