| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bcval5 | Unicode version | ||
| Description: Write out the top and
bottom parts of the binomial coefficient
        | 
| Ref | Expression | 
|---|---|
| bcval5 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bcval2 10842 | 
. . . 4
 | |
| 2 | 1 | adantl 277 | 
. . 3
 | 
| 3 | simprl 529 | 
. . . . . . . . 9
 | |
| 4 | simprr 531 | 
. . . . . . . . 9
 | |
| 5 | 3, 4 | mulcld 8047 | 
. . . . . . . 8
 | 
| 6 | simpr1 1005 | 
. . . . . . . . 9
 | |
| 7 | simpr2 1006 | 
. . . . . . . . 9
 | |
| 8 | simpr3 1007 | 
. . . . . . . . 9
 | |
| 9 | 6, 7, 8 | mulassd 8050 | 
. . . . . . . 8
 | 
| 10 | simpll 527 | 
. . . . . . . . . . . . 13
 | |
| 11 | 10 | nn0zd 9446 | 
. . . . . . . . . . . 12
 | 
| 12 | simplr 528 | 
. . . . . . . . . . . . 13
 | |
| 13 | 12 | nnzd 9447 | 
. . . . . . . . . . . 12
 | 
| 14 | 11, 13 | zsubcld 9453 | 
. . . . . . . . . . 11
 | 
| 15 | 14 | peano2zd 9451 | 
. . . . . . . . . 10
 | 
| 16 | 1red 8041 | 
. . . . . . . . . . . 12
 | |
| 17 | 12 | nnred 9003 | 
. . . . . . . . . . . 12
 | 
| 18 | 10 | nn0red 9303 | 
. . . . . . . . . . . 12
 | 
| 19 | 12 | nnge1d 9033 | 
. . . . . . . . . . . 12
 | 
| 20 | 16, 17, 18, 19 | lesub2dd 8589 | 
. . . . . . . . . . 11
 | 
| 21 | 14 | zred 9448 | 
. . . . . . . . . . . 12
 | 
| 22 | leaddsub 8465 | 
. . . . . . . . . . . 12
 | |
| 23 | 21, 16, 18, 22 | syl3anc 1249 | 
. . . . . . . . . . 11
 | 
| 24 | 20, 23 | mpbird 167 | 
. . . . . . . . . 10
 | 
| 25 | eluz2 9607 | 
. . . . . . . . . 10
 | |
| 26 | 15, 11, 24, 25 | syl3anbrc 1183 | 
. . . . . . . . 9
 | 
| 27 | 26 | adantrr 479 | 
. . . . . . . 8
 | 
| 28 | simprr 531 | 
. . . . . . . . 9
 | |
| 29 | nnuz 9637 | 
. . . . . . . . 9
 | |
| 30 | 28, 29 | eleqtrdi 2289 | 
. . . . . . . 8
 | 
| 31 | fvi 5618 | 
. . . . . . . . . 10
 | |
| 32 | 31 | elv 2767 | 
. . . . . . . . 9
 | 
| 33 | eluzelcn 9612 | 
. . . . . . . . . 10
 | |
| 34 | 33 | adantl 277 | 
. . . . . . . . 9
 | 
| 35 | 32, 34 | eqeltrid 2283 | 
. . . . . . . 8
 | 
| 36 | 5, 9, 27, 30, 35 | seq3split 10580 | 
. . . . . . 7
 | 
| 37 | elfzuz3 10097 | 
. . . . . . . . . . 11
 | |
| 38 | 37 | adantl 277 | 
. . . . . . . . . 10
 | 
| 39 | eluznn 9674 | 
. . . . . . . . . 10
 | |
| 40 | 12, 38, 39 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 41 | 40 | adantrr 479 | 
. . . . . . . 8
 | 
| 42 | facnn 10819 | 
. . . . . . . 8
 | |
| 43 | 41, 42 | syl 14 | 
. . . . . . 7
 | 
| 44 | facnn 10819 | 
. . . . . . . . 9
 | |
| 45 | 28, 44 | syl 14 | 
. . . . . . . 8
 | 
| 46 | 45 | oveq1d 5937 | 
. . . . . . 7
 | 
| 47 | 36, 43, 46 | 3eqtr4d 2239 | 
. . . . . 6
 | 
| 48 | 47 | expr 375 | 
. . . . 5
 | 
| 49 | 10 | faccld 10828 | 
. . . . . . . . 9
 | 
| 50 | 49 | nncnd 9004 | 
. . . . . . . 8
 | 
| 51 | 50 | mulid2d 8045 | 
. . . . . . 7
 | 
| 52 | 40, 42 | syl 14 | 
. . . . . . . 8
 | 
| 53 | 52 | oveq2d 5938 | 
. . . . . . 7
 | 
| 54 | 51, 53 | eqtr3d 2231 | 
. . . . . 6
 | 
| 55 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 56 | fac0 10820 | 
. . . . . . . . 9
 | |
| 57 | 55, 56 | eqtrdi 2245 | 
. . . . . . . 8
 | 
| 58 | oveq1 5929 | 
. . . . . . . . . . 11
 | |
| 59 | 0p1e1 9104 | 
. . . . . . . . . . 11
 | |
| 60 | 58, 59 | eqtrdi 2245 | 
. . . . . . . . . 10
 | 
| 61 | 60 | seqeq1d 10545 | 
. . . . . . . . 9
 | 
| 62 | 61 | fveq1d 5560 | 
. . . . . . . 8
 | 
| 63 | 57, 62 | oveq12d 5940 | 
. . . . . . 7
 | 
| 64 | 63 | eqeq2d 2208 | 
. . . . . 6
 | 
| 65 | 54, 64 | syl5ibrcom 157 | 
. . . . 5
 | 
| 66 | fznn0sub 10132 | 
. . . . . . 7
 | |
| 67 | 66 | adantl 277 | 
. . . . . 6
 | 
| 68 | elnn0 9251 | 
. . . . . 6
 | |
| 69 | 67, 68 | sylib 122 | 
. . . . 5
 | 
| 70 | 48, 65, 69 | mpjaod 719 | 
. . . 4
 | 
| 71 | 70 | oveq1d 5937 | 
. . 3
 | 
| 72 | eqid 2196 | 
. . . . . 6
 | |
| 73 | fvi 5618 | 
. . . . . . . 8
 | |
| 74 | 73 | elv 2767 | 
. . . . . . 7
 | 
| 75 | eluzelcn 9612 | 
. . . . . . . 8
 | |
| 76 | 75 | adantl 277 | 
. . . . . . 7
 | 
| 77 | 74, 76 | eqeltrid 2283 | 
. . . . . 6
 | 
| 78 | mulcl 8006 | 
. . . . . . 7
 | |
| 79 | 78 | adantl 277 | 
. . . . . 6
 | 
| 80 | 72, 15, 77, 79 | seqf 10556 | 
. . . . 5
 | 
| 81 | 80, 26 | ffvelcdmd 5698 | 
. . . 4
 | 
| 82 | 12 | nnnn0d 9302 | 
. . . . . 6
 | 
| 83 | 82 | faccld 10828 | 
. . . . 5
 | 
| 84 | 83 | nncnd 9004 | 
. . . 4
 | 
| 85 | 67 | faccld 10828 | 
. . . . 5
 | 
| 86 | 85 | nncnd 9004 | 
. . . 4
 | 
| 87 | 83 | nnap0d 9036 | 
. . . 4
 | 
| 88 | 85 | nnap0d 9036 | 
. . . 4
 | 
| 89 | 81, 84, 86, 87, 88 | divcanap5d 8844 | 
. . 3
 | 
| 90 | 2, 71, 89 | 3eqtrd 2233 | 
. 2
 | 
| 91 | simplr 528 | 
. . . . . . 7
 | |
| 92 | 91 | nnnn0d 9302 | 
. . . . . 6
 | 
| 93 | 92 | faccld 10828 | 
. . . . 5
 | 
| 94 | 93 | nncnd 9004 | 
. . . 4
 | 
| 95 | 93 | nnap0d 9036 | 
. . . 4
 | 
| 96 | 94, 95 | div0apd 8814 | 
. . 3
 | 
| 97 | mulcl 8006 | 
. . . . . 6
 | |
| 98 | 97 | adantl 277 | 
. . . . 5
 | 
| 99 | eluzelcn 9612 | 
. . . . . . 7
 | |
| 100 | 99 | adantl 277 | 
. . . . . 6
 | 
| 101 | 32, 100 | eqeltrid 2283 | 
. . . . 5
 | 
| 102 | simpr 110 | 
. . . . . 6
 | |
| 103 | 102 | mul02d 8418 | 
. . . . 5
 | 
| 104 | 102 | mul01d 8419 | 
. . . . 5
 | 
| 105 | simpr 110 | 
. . . . . . . . 9
 | |
| 106 | nn0uz 9636 | 
. . . . . . . . . . . 12
 | |
| 107 | 92, 106 | eleqtrdi 2289 | 
. . . . . . . . . . 11
 | 
| 108 | simpll 527 | 
. . . . . . . . . . . 12
 | |
| 109 | 108 | nn0zd 9446 | 
. . . . . . . . . . 11
 | 
| 110 | elfz5 10092 | 
. . . . . . . . . . 11
 | |
| 111 | 107, 109, 110 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 112 | nn0re 9258 | 
. . . . . . . . . . . 12
 | |
| 113 | 112 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 114 | nnre 8997 | 
. . . . . . . . . . . 12
 | |
| 115 | 114 | ad2antlr 489 | 
. . . . . . . . . . 11
 | 
| 116 | 113, 115 | subge0d 8562 | 
. . . . . . . . . 10
 | 
| 117 | 111, 116 | bitr4d 191 | 
. . . . . . . . 9
 | 
| 118 | 105, 117 | mtbid 673 | 
. . . . . . . 8
 | 
| 119 | simpl 109 | 
. . . . . . . . . . . 12
 | |
| 120 | 119 | nn0zd 9446 | 
. . . . . . . . . . 11
 | 
| 121 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 122 | 121 | nnzd 9447 | 
. . . . . . . . . . 11
 | 
| 123 | 120, 122 | zsubcld 9453 | 
. . . . . . . . . 10
 | 
| 124 | 123 | adantr 276 | 
. . . . . . . . 9
 | 
| 125 | 0z 9337 | 
. . . . . . . . 9
 | |
| 126 | zltnle 9372 | 
. . . . . . . . 9
 | |
| 127 | 124, 125, 126 | sylancl 413 | 
. . . . . . . 8
 | 
| 128 | 118, 127 | mpbird 167 | 
. . . . . . 7
 | 
| 129 | zltp1le 9380 | 
. . . . . . . 8
 | |
| 130 | 124, 125, 129 | sylancl 413 | 
. . . . . . 7
 | 
| 131 | 128, 130 | mpbid 147 | 
. . . . . 6
 | 
| 132 | nn0ge0 9274 | 
. . . . . . 7
 | |
| 133 | 132 | ad2antrr 488 | 
. . . . . 6
 | 
| 134 | 0zd 9338 | 
. . . . . . 7
 | |
| 135 | 124 | peano2zd 9451 | 
. . . . . . 7
 | 
| 136 | elfz 10089 | 
. . . . . . 7
 | |
| 137 | 134, 135, 109, 136 | syl3anc 1249 | 
. . . . . 6
 | 
| 138 | 131, 133, 137 | mpbir2and 946 | 
. . . . 5
 | 
| 139 | 0cn 8018 | 
. . . . . 6
 | |
| 140 | fvi 5618 | 
. . . . . 6
 | |
| 141 | 139, 140 | mp1i 10 | 
. . . . 5
 | 
| 142 | 98, 101, 103, 104, 138, 141 | seq3z 10620 | 
. . . 4
 | 
| 143 | 142 | oveq1d 5937 | 
. . 3
 | 
| 144 | nnz 9345 | 
. . . . 5
 | |
| 145 | bcval3 10843 | 
. . . . 5
 | |
| 146 | 144, 145 | syl3an2 1283 | 
. . . 4
 | 
| 147 | 146 | 3expa 1205 | 
. . 3
 | 
| 148 | 96, 143, 147 | 3eqtr4rd 2240 | 
. 2
 | 
| 149 | 0zd 9338 | 
. . . 4
 | |
| 150 | fzdcel 10115 | 
. . . 4
 | |
| 151 | 122, 149, 120, 150 | syl3anc 1249 | 
. . 3
 | 
| 152 | exmiddc 837 | 
. . 3
 | |
| 153 | 151, 152 | syl 14 | 
. 2
 | 
| 154 | 90, 148, 153 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-fz 10084 df-seqfrec 10540 df-fac 10818 df-bc 10840 | 
| This theorem is referenced by: bcn2 10856 | 
| Copyright terms: Public domain | W3C validator |