ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdclt Unicode version

Theorem zdclt 9452
Description: Integer  < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
zdclt  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )

Proof of Theorem zdclt
StepHypRef Expression
1 ztri3or 9417 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9378 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9378 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 orc 714 . . . . . 6  |-  ( A  <  B  ->  ( A  <  B  \/  -.  A  <  B ) )
5 df-dc 837 . . . . . 6  |-  (DECID  A  < 
B  <->  ( A  < 
B  \/  -.  A  <  B ) )
64, 5sylibr 134 . . . . 5  |-  ( A  <  B  -> DECID  A  <  B )
76a1i 9 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <  B ) )
8 ltnr 8151 . . . . . . . . 9  |-  ( A  e.  RR  ->  -.  A  <  A )
98adantr 276 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =  B )  ->  -.  A  <  A
)
10 breq2 4049 . . . . . . . . 9  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
1110adantl 277 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =  B )  ->  ( A  <  A  <->  A  <  B ) )
129, 11mtbid 674 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  -.  A  <  B
)
13 olc 713 . . . . . . . 8  |-  ( -.  A  <  B  -> 
( A  <  B  \/  -.  A  <  B
) )
1413, 5sylibr 134 . . . . . . 7  |-  ( -.  A  <  B  -> DECID  A  <  B )
1512, 14syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <  B )
1615ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  < 
B ) )
1716adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <  B )
)
18 ltnsym 8160 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  -.  A  <  B
) )
1918ancoms 268 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <  B
) )
2019, 14syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <  B ) )
217, 17, 203jaod 1317 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <  B ) )
222, 3, 21syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <  B ) )
231, 22mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4045   RRcr 7926    < clt 8109   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375
This theorem is referenced by:  fztri3or  10163  modifeq2int  10533  modsumfzodifsn  10543  seqf1oglem1  10666  seqf1oglem2  10667  exp3val  10688  ccatsymb  11061  fzowrddc  11103  swrd0g  11116  cvgratz  11876  bitsfzolem  12298  bitsmod  12300  infpnlem1  12715  infpnlem2  12716  gsumfzval  13256  gsumfzz  13360  gsumfzcl  13364  mulgval  13491  mulgfng  13493  subgmulg  13557  gsumfzreidx  13706  gsumfzsubmcl  13707  gsumfzmptfidmadd  13708  gsumfzmhm  13712  gsumfzfsum  14383  lgsval  15514  lgscllem  15517  lgsneg  15534  lgsdilem  15537  lgsdir  15545  lgsdi  15547  lgsne0  15548  lgsquadlemsfi  15585  lgsquadlem3  15589
  Copyright terms: Public domain W3C validator