ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdclt Unicode version

Theorem zdclt 9236
Description: Integer  < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
zdclt  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )

Proof of Theorem zdclt
StepHypRef Expression
1 ztri3or 9205 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
2 zre 9166 . . 3  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 zre 9166 . . 3  |-  ( B  e.  ZZ  ->  B  e.  RR )
4 orc 702 . . . . . 6  |-  ( A  <  B  ->  ( A  <  B  \/  -.  A  <  B ) )
5 df-dc 821 . . . . . 6  |-  (DECID  A  < 
B  <->  ( A  < 
B  \/  -.  A  <  B ) )
64, 5sylibr 133 . . . . 5  |-  ( A  <  B  -> DECID  A  <  B )
76a1i 9 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> DECID  A  <  B ) )
8 ltnr 7949 . . . . . . . . 9  |-  ( A  e.  RR  ->  -.  A  <  A )
98adantr 274 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =  B )  ->  -.  A  <  A
)
10 breq2 3969 . . . . . . . . 9  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
1110adantl 275 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =  B )  ->  ( A  <  A  <->  A  <  B ) )
129, 11mtbid 662 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =  B )  ->  -.  A  <  B
)
13 olc 701 . . . . . . . 8  |-  ( -.  A  <  B  -> 
( A  <  B  \/  -.  A  <  B
) )
1413, 5sylibr 133 . . . . . . 7  |-  ( -.  A  <  B  -> DECID  A  <  B )
1512, 14syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  -> DECID  A  <  B )
1615ex 114 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  -> DECID  A  < 
B ) )
1716adantr 274 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  -> DECID 
A  <  B )
)
18 ltnsym 7958 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  -.  A  <  B
) )
1918ancoms 266 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  ->  -.  A  <  B
) )
2019, 14syl6 33 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  -> DECID  A  <  B ) )
217, 17, 203jaod 1286 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <  B ) )
222, 3, 21syl2an 287 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  -> DECID  A  <  B ) )
231, 22mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    \/ w3o 962    = wceq 1335    e. wcel 2128   class class class wbr 3965   RRcr 7726    < clt 7907   ZZcz 9162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-addcom 7827  ax-addass 7829  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-0id 7835  ax-rnegex 7836  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-ltadd 7843
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-inn 8829  df-n0 9086  df-z 9163
This theorem is referenced by:  fztri3or  9936  modifeq2int  10280  modsumfzodifsn  10290  exp3val  10416  cvgratz  11424
  Copyright terms: Public domain W3C validator