ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmfvg GIF version

Theorem ndmfvg 5560
Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
ndmfvg ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)

Proof of Theorem ndmfvg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 euex 2067 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
2 eldmg 4836 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
31, 2imbitrrid 156 . . . 4 (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ dom 𝐹))
43con3d 632 . . 3 (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥))
5 tz6.12-2 5520 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
64, 5syl6 33 . 2 (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅))
76imp 124 1 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1363  wex 1502  ∃!weu 2037  wcel 2159  Vcvv 2751  c0 3436   class class class wbr 4017  dom cdm 4640  cfv 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-dm 4650  df-iota 5192  df-fv 5238
This theorem is referenced by:  ovprc  5925  sumnul  11449
  Copyright terms: Public domain W3C validator