ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmfvg GIF version

Theorem ndmfvg 5658
Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
ndmfvg ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)

Proof of Theorem ndmfvg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 euex 2107 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
2 eldmg 4918 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
31, 2imbitrrid 156 . . . 4 (𝐴 ∈ V → (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ dom 𝐹))
43con3d 634 . . 3 (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → ¬ ∃!𝑥 𝐴𝐹𝑥))
5 tz6.12-2 5618 . . 3 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
64, 5syl6 33 . 2 (𝐴 ∈ V → (¬ 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅))
76imp 124 1 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  Vcvv 2799  c0 3491   class class class wbr 4083  dom cdm 4719  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-dm 4729  df-iota 5278  df-fv 5326
This theorem is referenced by:  ovprc  6037  wrdsymb0  11104  lsw0  11119  pfxclz  11211  sumnul  11935  structiedg0val  15841
  Copyright terms: Public domain W3C validator