| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndmima | Unicode version | ||
| Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
| Ref | Expression |
|---|---|
| ndmima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4696 |
. 2
| |
| 2 | dmres 4989 |
. . . . 5
| |
| 3 | incom 3369 |
. . . . 5
| |
| 4 | 2, 3 | eqtri 2227 |
. . . 4
|
| 5 | disjsn 3700 |
. . . . 5
| |
| 6 | 5 | biimpri 133 |
. . . 4
|
| 7 | 4, 6 | eqtrid 2251 |
. . 3
|
| 8 | dm0rn0 4904 |
. . 3
| |
| 9 | 7, 8 | sylib 122 |
. 2
|
| 10 | 1, 9 | eqtrid 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: fvun1 5658 |
| Copyright terms: Public domain | W3C validator |