ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima Unicode version

Theorem ndmima 5046
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4676 . 2  |-  ( B
" { A }
)  =  ran  ( B  |`  { A }
)
2 dmres 4967 . . . . 5  |-  dom  ( B  |`  { A }
)  =  ( { A }  i^i  dom  B )
3 incom 3355 . . . . 5  |-  ( { A }  i^i  dom  B )  =  ( dom 
B  i^i  { A } )
42, 3eqtri 2217 . . . 4  |-  dom  ( B  |`  { A }
)  =  ( dom 
B  i^i  { A } )
5 disjsn 3684 . . . . 5  |-  ( ( dom  B  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  B )
65biimpri 133 . . . 4  |-  ( -.  A  e.  dom  B  ->  ( dom  B  i^i  { A } )  =  (/) )
74, 6eqtrid 2241 . . 3  |-  ( -.  A  e.  dom  B  ->  dom  ( B  |`  { A } )  =  (/) )
8 dm0rn0 4883 . . 3  |-  ( dom  ( B  |`  { A } )  =  (/)  <->  ran  ( B  |`  { A } )  =  (/) )
97, 8sylib 122 . 2  |-  ( -.  A  e.  dom  B  ->  ran  ( B  |`  { A } )  =  (/) )
101, 9eqtrid 2241 1  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2167    i^i cin 3156   (/)c0 3450   {csn 3622   dom cdm 4663   ran crn 4664    |` cres 4665   "cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  fvun1  5627
  Copyright terms: Public domain W3C validator