ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima Unicode version

Theorem ndmima 4842
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4480 . 2  |-  ( B
" { A }
)  =  ran  ( B  |`  { A }
)
2 dmres 4766 . . . . 5  |-  dom  ( B  |`  { A }
)  =  ( { A }  i^i  dom  B )
3 incom 3207 . . . . 5  |-  ( { A }  i^i  dom  B )  =  ( dom 
B  i^i  { A } )
42, 3eqtri 2115 . . . 4  |-  dom  ( B  |`  { A }
)  =  ( dom 
B  i^i  { A } )
5 disjsn 3524 . . . . 5  |-  ( ( dom  B  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  B )
65biimpri 132 . . . 4  |-  ( -.  A  e.  dom  B  ->  ( dom  B  i^i  { A } )  =  (/) )
74, 6syl5eq 2139 . . 3  |-  ( -.  A  e.  dom  B  ->  dom  ( B  |`  { A } )  =  (/) )
8 dm0rn0 4684 . . 3  |-  ( dom  ( B  |`  { A } )  =  (/)  <->  ran  ( B  |`  { A } )  =  (/) )
97, 8sylib 121 . 2  |-  ( -.  A  e.  dom  B  ->  ran  ( B  |`  { A } )  =  (/) )
101, 9syl5eq 2139 1  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1296    e. wcel 1445    i^i cin 3012   (/)c0 3302   {csn 3466   dom cdm 4467   ran crn 4468    |` cres 4469   "cima 4470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-xp 4473  df-cnv 4475  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480
This theorem is referenced by:  fvun1  5405
  Copyright terms: Public domain W3C validator