ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima Unicode version

Theorem ndmima 5042
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4672 . 2  |-  ( B
" { A }
)  =  ran  ( B  |`  { A }
)
2 dmres 4963 . . . . 5  |-  dom  ( B  |`  { A }
)  =  ( { A }  i^i  dom  B )
3 incom 3351 . . . . 5  |-  ( { A }  i^i  dom  B )  =  ( dom 
B  i^i  { A } )
42, 3eqtri 2214 . . . 4  |-  dom  ( B  |`  { A }
)  =  ( dom 
B  i^i  { A } )
5 disjsn 3680 . . . . 5  |-  ( ( dom  B  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  B )
65biimpri 133 . . . 4  |-  ( -.  A  e.  dom  B  ->  ( dom  B  i^i  { A } )  =  (/) )
74, 6eqtrid 2238 . . 3  |-  ( -.  A  e.  dom  B  ->  dom  ( B  |`  { A } )  =  (/) )
8 dm0rn0 4879 . . 3  |-  ( dom  ( B  |`  { A } )  =  (/)  <->  ran  ( B  |`  { A } )  =  (/) )
97, 8sylib 122 . 2  |-  ( -.  A  e.  dom  B  ->  ran  ( B  |`  { A } )  =  (/) )
101, 9eqtrid 2238 1  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2164    i^i cin 3152   (/)c0 3446   {csn 3618   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  fvun1  5623
  Copyright terms: Public domain W3C validator