Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndmima | GIF version |
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
ndmima | ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4617 | . 2 ⊢ (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴}) | |
2 | dmres 4905 | . . . . 5 ⊢ dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵) | |
3 | incom 3314 | . . . . 5 ⊢ ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴}) | |
4 | 2, 3 | eqtri 2186 | . . . 4 ⊢ dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴}) |
5 | disjsn 3638 | . . . . 5 ⊢ ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵) | |
6 | 5 | biimpri 132 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅) |
7 | 4, 6 | syl5eq 2211 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅) |
8 | dm0rn0 4821 | . . 3 ⊢ (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅) | |
9 | 7, 8 | sylib 121 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅) |
10 | 1, 9 | syl5eq 2211 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ∅c0 3409 {csn 3576 dom cdm 4604 ran crn 4605 ↾ cres 4606 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: fvun1 5552 |
Copyright terms: Public domain | W3C validator |