ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima GIF version

Theorem ndmima 5046
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4676 . 2 (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴})
2 dmres 4967 . . . . 5 dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵)
3 incom 3355 . . . . 5 ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴})
42, 3eqtri 2217 . . . 4 dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴})
5 disjsn 3684 . . . . 5 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
65biimpri 133 . . . 4 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅)
74, 6eqtrid 2241 . . 3 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅)
8 dm0rn0 4883 . . 3 (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅)
97, 8sylib 122 . 2 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅)
101, 9eqtrid 2241 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  cin 3156  c0 3450  {csn 3622  dom cdm 4663  ran crn 4664  cres 4665  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  fvun1  5627
  Copyright terms: Public domain W3C validator