| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndmima | GIF version | ||
| Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
| Ref | Expression |
|---|---|
| ndmima | ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4709 | . 2 ⊢ (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴}) | |
| 2 | dmres 5002 | . . . . 5 ⊢ dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵) | |
| 3 | incom 3376 | . . . . 5 ⊢ ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴}) | |
| 4 | 2, 3 | eqtri 2230 | . . . 4 ⊢ dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴}) |
| 5 | disjsn 3708 | . . . . 5 ⊢ ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵) | |
| 6 | 5 | biimpri 133 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅) |
| 7 | 4, 6 | eqtrid 2254 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅) |
| 8 | dm0rn0 4917 | . . 3 ⊢ (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅) | |
| 9 | 7, 8 | sylib 122 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅) |
| 10 | 1, 9 | eqtrid 2254 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1375 ∈ wcel 2180 ∩ cin 3176 ∅c0 3471 {csn 3646 dom cdm 4696 ran crn 4697 ↾ cres 4698 “ cima 4699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 |
| This theorem is referenced by: fvun1 5673 |
| Copyright terms: Public domain | W3C validator |