ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima GIF version

Theorem ndmima 5081
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4709 . 2 (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴})
2 dmres 5002 . . . . 5 dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵)
3 incom 3376 . . . . 5 ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴})
42, 3eqtri 2230 . . . 4 dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴})
5 disjsn 3708 . . . . 5 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
65biimpri 133 . . . 4 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅)
74, 6eqtrid 2254 . . 3 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅)
8 dm0rn0 4917 . . 3 (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅)
97, 8sylib 122 . 2 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅)
101, 9eqtrid 2254 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1375  wcel 2180  cin 3176  c0 3471  {csn 3646  dom cdm 4696  ran crn 4697  cres 4698  cima 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-cnv 4704  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709
This theorem is referenced by:  fvun1  5673
  Copyright terms: Public domain W3C validator