ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima GIF version

Theorem ndmima 4976
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4612 . 2 (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴})
2 dmres 4900 . . . . 5 dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵)
3 incom 3310 . . . . 5 ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴})
42, 3eqtri 2185 . . . 4 dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴})
5 disjsn 3633 . . . . 5 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
65biimpri 132 . . . 4 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅)
74, 6syl5eq 2209 . . 3 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅)
8 dm0rn0 4816 . . 3 (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅)
97, 8sylib 121 . 2 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅)
101, 9syl5eq 2209 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1342  wcel 2135  cin 3111  c0 3405  {csn 3571  dom cdm 4599  ran crn 4600  cres 4601  cima 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039  df-xp 4605  df-cnv 4607  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612
This theorem is referenced by:  fvun1  5547
  Copyright terms: Public domain W3C validator