![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndmima | GIF version |
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
ndmima | ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4639 | . 2 ⊢ (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴}) | |
2 | dmres 4928 | . . . . 5 ⊢ dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵) | |
3 | incom 3327 | . . . . 5 ⊢ ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴}) | |
4 | 2, 3 | eqtri 2198 | . . . 4 ⊢ dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴}) |
5 | disjsn 3654 | . . . . 5 ⊢ ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵) | |
6 | 5 | biimpri 133 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅) |
7 | 4, 6 | eqtrid 2222 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅) |
8 | dm0rn0 4844 | . . 3 ⊢ (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅) | |
9 | 7, 8 | sylib 122 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅) |
10 | 1, 9 | eqtrid 2222 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∈ wcel 2148 ∩ cin 3128 ∅c0 3422 {csn 3592 dom cdm 4626 ran crn 4627 ↾ cres 4628 “ cima 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-xp 4632 df-cnv 4634 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 |
This theorem is referenced by: fvun1 5582 |
Copyright terms: Public domain | W3C validator |