ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmima GIF version

Theorem ndmima 5105
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4732 . 2 (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴})
2 dmres 5026 . . . . 5 dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵)
3 incom 3396 . . . . 5 ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴})
42, 3eqtri 2250 . . . 4 dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴})
5 disjsn 3728 . . . . 5 ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵)
65biimpri 133 . . . 4 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅)
74, 6eqtrid 2274 . . 3 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅)
8 dm0rn0 4940 . . 3 (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅)
97, 8sylib 122 . 2 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅)
101, 9eqtrid 2274 1 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  cin 3196  c0 3491  {csn 3666  dom cdm 4719  ran crn 4720  cres 4721  cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  fvun1  5702
  Copyright terms: Public domain W3C validator