![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndmima | GIF version |
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
ndmima | ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4672 | . 2 ⊢ (𝐵 “ {𝐴}) = ran (𝐵 ↾ {𝐴}) | |
2 | dmres 4963 | . . . . 5 ⊢ dom (𝐵 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐵) | |
3 | incom 3351 | . . . . 5 ⊢ ({𝐴} ∩ dom 𝐵) = (dom 𝐵 ∩ {𝐴}) | |
4 | 2, 3 | eqtri 2214 | . . . 4 ⊢ dom (𝐵 ↾ {𝐴}) = (dom 𝐵 ∩ {𝐴}) |
5 | disjsn 3680 | . . . . 5 ⊢ ((dom 𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐵) | |
6 | 5 | biimpri 133 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (dom 𝐵 ∩ {𝐴}) = ∅) |
7 | 4, 6 | eqtrid 2238 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐵 → dom (𝐵 ↾ {𝐴}) = ∅) |
8 | dm0rn0 4879 | . . 3 ⊢ (dom (𝐵 ↾ {𝐴}) = ∅ ↔ ran (𝐵 ↾ {𝐴}) = ∅) | |
9 | 7, 8 | sylib 122 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐵 → ran (𝐵 ↾ {𝐴}) = ∅) |
10 | 1, 9 | eqtrid 2238 | 1 ⊢ (¬ 𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ∩ cin 3152 ∅c0 3446 {csn 3618 dom cdm 4659 ran crn 4660 ↾ cres 4661 “ cima 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 |
This theorem is referenced by: fvun1 5623 |
Copyright terms: Public domain | W3C validator |