ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scandxnplusgndx Unicode version

Theorem scandxnplusgndx 12615
Description: The slot for the scalar field is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
Assertion
Ref Expression
scandxnplusgndx  |-  (Scalar `  ndx )  =/=  ( +g  `  ndx )

Proof of Theorem scandxnplusgndx
StepHypRef Expression
1 2re 8991 . . 3  |-  2  e.  RR
2 2lt5 9098 . . 3  |-  2  <  5
31, 2gtneii 8055 . 2  |-  5  =/=  2
4 scandx 12611 . . 3  |-  (Scalar `  ndx )  =  5
5 plusgndx 12570 . . 3  |-  ( +g  ` 
ndx )  =  2
64, 5neeq12i 2364 . 2  |-  ( (Scalar `  ndx )  =/=  ( +g  `  ndx )  <->  5  =/=  2 )
73, 6mpbir 146 1  |-  (Scalar `  ndx )  =/=  ( +g  `  ndx )
Colors of variables: wff set class
Syntax hints:    =/= wne 2347   ` cfv 5218   2c2 8972   5c5 8975   ndxcnx 12461   +g cplusg 12538  Scalarcsca 12541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-ndx 12467  df-slot 12468  df-plusg 12551  df-sca 12554
This theorem is referenced by:  mgpscag  13142
  Copyright terms: Public domain W3C validator