Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmsbasg | Unicode version |
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | |
setsms.d | |
setsms.k | sSet TopSet |
setsmsbasg.m | |
setsmsbasg.d |
Ref | Expression |
---|---|
setsmsbasg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 | |
2 | setsmsbasg.d | . . 3 | |
3 | baseslid 12472 | . . . 4 Slot | |
4 | 1re 7919 | . . . . . 6 | |
5 | 1lt9 9082 | . . . . . 6 | |
6 | 4, 5 | ltneii 8016 | . . . . 5 |
7 | basendx 12470 | . . . . . 6 | |
8 | tsetndx 12566 | . . . . . 6 TopSet | |
9 | 7, 8 | neeq12i 2357 | . . . . 5 TopSet |
10 | 6, 9 | mpbir 145 | . . . 4 TopSet |
11 | 9nn 9046 | . . . . 5 | |
12 | 8, 11 | eqeltri 2243 | . . . 4 TopSet |
13 | 3, 10, 12 | setsslnid 12467 | . . 3 sSet TopSet |
14 | 1, 2, 13 | syl2anc 409 | . 2 sSet TopSet |
15 | setsms.x | . 2 | |
16 | setsms.k | . . 3 sSet TopSet | |
17 | 16 | fveq2d 5500 | . 2 sSet TopSet |
18 | 14, 15, 17 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wne 2340 cop 3586 cxp 4609 cres 4613 cfv 5198 (class class class)co 5853 c1 7775 cn 8878 c9 8936 cnx 12413 sSet csts 12414 cbs 12416 TopSetcts 12486 cds 12489 cmopn 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-ndx 12419 df-slot 12420 df-base 12422 df-sets 12423 df-tset 12499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |