ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsbasg Unicode version

Theorem setsmsbasg 14064
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x  |-  ( ph  ->  X  =  ( Base `  M ) )
setsms.d  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
setsms.k  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
setsmsbasg.m  |-  ( ph  ->  M  e.  V )
setsmsbasg.d  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
Assertion
Ref Expression
setsmsbasg  |-  ( ph  ->  X  =  ( Base `  K ) )

Proof of Theorem setsmsbasg
StepHypRef Expression
1 setsmsbasg.m . . 3  |-  ( ph  ->  M  e.  V )
2 setsmsbasg.d . . 3  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
3 baseslid 12521 . . . 4  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
4 1re 7958 . . . . . 6  |-  1  e.  RR
5 1lt9 9125 . . . . . 6  |-  1  <  9
64, 5ltneii 8056 . . . . 5  |-  1  =/=  9
7 basendx 12519 . . . . . 6  |-  ( Base `  ndx )  =  1
8 tsetndx 12646 . . . . . 6  |-  (TopSet `  ndx )  =  9
97, 8neeq12i 2364 . . . . 5  |-  ( (
Base `  ndx )  =/=  (TopSet `  ndx )  <->  1  =/=  9 )
106, 9mpbir 146 . . . 4  |-  ( Base `  ndx )  =/=  (TopSet ` 
ndx )
11 9nn 9089 . . . . 5  |-  9  e.  NN
128, 11eqeltri 2250 . . . 4  |-  (TopSet `  ndx )  e.  NN
133, 10, 12setsslnid 12516 . . 3  |-  ( ( M  e.  V  /\  ( MetOpen `  D )  e.  W )  ->  ( Base `  M )  =  ( Base `  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. )
) )
141, 2, 13syl2anc 411 . 2  |-  ( ph  ->  ( Base `  M
)  =  ( Base `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
15 setsms.x . 2  |-  ( ph  ->  X  =  ( Base `  M ) )
16 setsms.k . . 3  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
1716fveq2d 5521 . 2  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
1814, 15, 173eqtr4d 2220 1  |-  ( ph  ->  X  =  ( Base `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    =/= wne 2347   <.cop 3597    X. cxp 4626    |` cres 4630   ` cfv 5218  (class class class)co 5877   1c1 7814   NNcn 8921   9c9 8979   ndxcnx 12461   sSet csts 12462   Basecbs 12464  TopSetcts 12544   distcds 12547   MetOpencmopn 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-tset 12557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator