Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmsbasg | Unicode version |
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | |
setsms.d | |
setsms.k | sSet TopSet |
setsmsbasg.m | |
setsmsbasg.d |
Ref | Expression |
---|---|
setsmsbasg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 | |
2 | setsmsbasg.d | . . 3 | |
3 | baseslid 12450 | . . . 4 Slot | |
4 | 1re 7898 | . . . . . 6 | |
5 | 1lt9 9061 | . . . . . 6 | |
6 | 4, 5 | ltneii 7995 | . . . . 5 |
7 | basendx 12448 | . . . . . 6 | |
8 | tsetndx 12543 | . . . . . 6 TopSet | |
9 | 7, 8 | neeq12i 2353 | . . . . 5 TopSet |
10 | 6, 9 | mpbir 145 | . . . 4 TopSet |
11 | 9nn 9025 | . . . . 5 | |
12 | 8, 11 | eqeltri 2239 | . . . 4 TopSet |
13 | 3, 10, 12 | setsslnid 12445 | . . 3 sSet TopSet |
14 | 1, 2, 13 | syl2anc 409 | . 2 sSet TopSet |
15 | setsms.x | . 2 | |
16 | setsms.k | . . 3 sSet TopSet | |
17 | 16 | fveq2d 5490 | . 2 sSet TopSet |
18 | 14, 15, 17 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wne 2336 cop 3579 cxp 4602 cres 4606 cfv 5188 (class class class)co 5842 c1 7754 cn 8857 c9 8915 cnx 12391 sSet csts 12392 cbs 12394 TopSetcts 12463 cds 12466 cmopn 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-sets 12401 df-tset 12476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |