ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfvf Unicode version

Theorem ffnfvf 5741
Description: A function maps to a class to which all values belong. This version of ffnfv 5740 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1  |-  F/_ x A
ffnfvf.2  |-  F/_ x B
ffnfvf.3  |-  F/_ x F
Assertion
Ref Expression
ffnfvf  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )

Proof of Theorem ffnfvf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffnfv 5740 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  e.  B
) )
2 nfcv 2348 . . . 4  |-  F/_ z A
3 ffnfvf.1 . . . 4  |-  F/_ x A
4 ffnfvf.3 . . . . . 6  |-  F/_ x F
5 nfcv 2348 . . . . . 6  |-  F/_ x
z
64, 5nffv 5588 . . . . 5  |-  F/_ x
( F `  z
)
7 ffnfvf.2 . . . . 5  |-  F/_ x B
86, 7nfel 2357 . . . 4  |-  F/ x
( F `  z
)  e.  B
9 nfv 1551 . . . 4  |-  F/ z ( F `  x
)  e.  B
10 fveq2 5578 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
1110eleq1d 2274 . . . 4  |-  ( z  =  x  ->  (
( F `  z
)  e.  B  <->  ( F `  x )  e.  B
) )
122, 3, 8, 9, 11cbvralf 2730 . . 3  |-  ( A. z  e.  A  ( F `  z )  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B )
1312anbi2i 457 . 2  |-  ( ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
141, 13bitri 184 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176   F/_wnfc 2335   A.wral 2484    Fn wfn 5267   -->wf 5268   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by:  ixpf  6809  cc4f  7383
  Copyright terms: Public domain W3C validator