ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexw GIF version

Theorem nfrexw 2569
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2571 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfrexw 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexw
StepHypRef Expression
1 nftru 1512 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexdxy 2564 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1404 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1396  wnf 1506  wnfc 2359  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  r19.12  2637  sbcrext  3106  nfuni  3893  nfiunxy  3990  rexxpf  4866  abrexex2g  6255  abrexex2  6259  nfrecs  6443  nfwrd  11086  fimaxre2  11724  nfsum  11854  nfcprod1  12051  nfcprod  12052  bezoutlemmain  12505  ctiunctlemfo  12996  bj-findis  16272  strcollnfALT  16279
  Copyright terms: Public domain W3C validator