ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrexw GIF version

Theorem nfrexw 2546
Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2548 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
Hypotheses
Ref Expression
nfralxy.1 𝑥𝐴
nfralxy.2 𝑥𝜑
Assertion
Ref Expression
nfrexw 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexw
StepHypRef Expression
1 nftru 1490 . . 3 𝑦
2 nfralxy.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfralxy.2 . . . 4 𝑥𝜑
54a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexdxy 2541 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1382 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnf 1484  wnfc 2336  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491
This theorem is referenced by:  r19.12  2613  sbcrext  3080  nfuni  3861  nfiunxy  3958  rexxpf  4832  abrexex2g  6217  abrexex2  6221  nfrecs  6405  nfwrd  11039  fimaxre2  11608  nfsum  11738  nfcprod1  11935  nfcprod  11936  bezoutlemmain  12389  ctiunctlemfo  12880  bj-findis  16049  strcollnfALT  16056
  Copyright terms: Public domain W3C validator