| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexw | GIF version | ||
| Description: Not-free for restricted existential quantification where 𝑥 and 𝑦 are distinct. See nfrexya 2571 for a version with 𝑦 and 𝐴 distinct instead. (Contributed by Jim Kingdon, 30-May-2018.) |
| Ref | Expression |
|---|---|
| nfralxy.1 | ⊢ Ⅎ𝑥𝐴 |
| nfralxy.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrexw | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1512 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfralxy.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfralxy.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfrexdxy 2564 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
| 7 | 6 | mptru 1404 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1396 Ⅎwnf 1506 Ⅎwnfc 2359 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: r19.12 2637 sbcrext 3106 nfuni 3893 nfiunxy 3990 rexxpf 4866 abrexex2g 6255 abrexex2 6259 nfrecs 6443 nfwrd 11086 fimaxre2 11724 nfsum 11854 nfcprod1 12051 nfcprod 12052 bezoutlemmain 12505 ctiunctlemfo 12996 bj-findis 16272 strcollnfALT 16279 |
| Copyright terms: Public domain | W3C validator |