ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmzbi Unicode version

Theorem nmzbi 13660
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
Assertion
Ref Expression
nmzbi  |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
Distinct variable groups:    x, A    x, y, S    x,  .+ , y    x, X, y
Allowed substitution hints:    A( y)    B( x, y)    N( x, y)

Proof of Theorem nmzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
21elnmz 13659 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
32simprbi 275 . 2  |-  ( A  e.  N  ->  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) )
4 oveq2 5975 . . . . 5  |-  ( z  =  B  ->  ( A  .+  z )  =  ( A  .+  B
) )
54eleq1d 2276 . . . 4  |-  ( z  =  B  ->  (
( A  .+  z
)  e.  S  <->  ( A  .+  B )  e.  S
) )
6 oveq1 5974 . . . . 5  |-  ( z  =  B  ->  (
z  .+  A )  =  ( B  .+  A ) )
76eleq1d 2276 . . . 4  |-  ( z  =  B  ->  (
( z  .+  A
)  e.  S  <->  ( B  .+  A )  e.  S
) )
85, 7bibi12d 235 . . 3  |-  ( z  =  B  ->  (
( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S )  <->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
98rspccva 2883 . 2  |-  ( ( A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S )  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
103, 9sylan 283 1  |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  nmzsubg  13661  nmznsg  13664  conjnmz  13730
  Copyright terms: Public domain W3C validator