ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmzbi Unicode version

Theorem nmzbi 13578
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
Assertion
Ref Expression
nmzbi  |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
Distinct variable groups:    x, A    x, y, S    x,  .+ , y    x, X, y
Allowed substitution hints:    A( y)    B( x, y)    N( x, y)

Proof of Theorem nmzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
21elnmz 13577 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
32simprbi 275 . 2  |-  ( A  e.  N  ->  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) )
4 oveq2 5954 . . . . 5  |-  ( z  =  B  ->  ( A  .+  z )  =  ( A  .+  B
) )
54eleq1d 2274 . . . 4  |-  ( z  =  B  ->  (
( A  .+  z
)  e.  S  <->  ( A  .+  B )  e.  S
) )
6 oveq1 5953 . . . . 5  |-  ( z  =  B  ->  (
z  .+  A )  =  ( B  .+  A ) )
76eleq1d 2274 . . . 4  |-  ( z  =  B  ->  (
( z  .+  A
)  e.  S  <->  ( B  .+  A )  e.  S
) )
85, 7bibi12d 235 . . 3  |-  ( z  =  B  ->  (
( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S )  <->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
98rspccva 2876 . 2  |-  ( ( A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S )  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
103, 9sylan 283 1  |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by:  nmzsubg  13579  nmznsg  13582  conjnmz  13648
  Copyright terms: Public domain W3C validator