HomeHome Intuitionistic Logic Explorer
Theorem List (p. 138 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlgsfcl2 13701* The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 13694). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> Z )
 
Theoremlgscllem 13702* The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgsfcl 13703* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsfle1 13704* The function  F has magnitude less or equal to  1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  M  e.  NN )  ->  ( abs `  ( F `  M ) )  <_  1 )
 
Theoremlgsval2lem 13705* Lemma for lgsval2 13711. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  Prime ) 
 ->  ( A  /L N )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( N  -  1 )  / 
 2 ) )  +  1 )  mod  N )  -  1 ) ) )
 
Theoremlgsval4lem 13706* Lemma for lgsval4 13715. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) ) )
 
Theoremlgscl2 13707* The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgs0 13708 The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 0 )  =  if ( ( A ^
 2 )  =  1 ,  1 ,  0 ) )
 
Theoremlgscl 13709 The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
 
Theoremlgsle1 13710 The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 13709 this implies that it takes values in  { -u 1 ,  0 ,  1 }. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  <_  1 )
 
Theoremlgsval2 13711 The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime  2). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( A  /L P )  =  if ( P  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  +  1 )  mod  P )  -  1 ) ) )
 
Theoremlgs2 13712 The Legendre symbol at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 2 )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) )
 
Theoremlgsval3 13713 The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ (
 ( P  -  1
 )  /  2 )
 )  +  1 ) 
 mod  P )  -  1
 ) )
 
Theoremlgsvalmod 13714 The Legendre symbol is equivalent to 
a ^ ( ( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  (
 ( A  /L P )  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  mod  P ) )
 
Theoremlgsval4 13715* Restate lgsval 13699 for nonzero  N, where the function  F has been abbreviated into a self-referential expression taking the value of  /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L N )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
  ( abs `  N ) ) ) )
 
Theoremlgsfcl3 13716* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsval4a 13717* Same as lgsval4 13715 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L N )  =  ( 
 seq 1 (  x. 
 ,  F ) `  N ) )
 
Theoremlgscl1 13718 The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  { -u 1 ,  0 ,  1 } )
 
Theoremlgsneg 13719 The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L -u N )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A 
 /L N ) ) )
 
Theoremlgsneg1 13720 The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  NN0  /\  N  e.  ZZ )  ->  ( A  /L -u N )  =  ( A  /L N ) )
 
Theoremlgsmod 13721 The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( ( A 
 mod  N )  /L N )  =  ( A  /L N ) )
 
Theoremlgsdilem 13722 Lemma for lgsdi 13732 and lgsdir 13730: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  if ( ( N  <  0 
 /\  ( A  x.  B )  <  0 ) ,  -u 1 ,  1 )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x. 
 if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
 
Theoremlgsdir2lem1 13723 Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( 1 
 mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  (
 ( 3  mod  8
 )  =  3  /\  ( -u 3  mod  8
 )  =  5 ) )
 
Theoremlgsdir2lem2 13724 Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ...
 K )  ->  ( A  mod  8 )  e.  S ) ) )   &    |-  M  =  ( K  +  1 )   &    |-  N  =  ( M  +  1 )   &    |-  N  e.  S   =>    |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  (
 0 ... N )  ->  ( A  mod  8 )  e.  S ) ) )
 
Theoremlgsdir2lem3 13725 Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A 
 mod  8 )  e.  ( { 1 ,  7 }  u.  {
 3 ,  5 } ) )
 
Theoremlgsdir2lem4 13726 Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e. 
 { 1 ,  7 } )  ->  (
 ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  { 1 ,  7 } )
 )
 
Theoremlgsdir2lem5 13727 Lemma for lgsdir2 13728. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
 ( A  mod  8
 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e.  { 3 ,  5 } ) ) 
 ->  ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 } )
 
Theoremlgsdir2 13728 The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L
 2 ) ) )
 
Theoremlgsdirprm 13729 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
 
Theoremlgsdir 13730 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
 
Theoremlgsdilem2 13731* Lemma for lgsdi 13732. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  =/=  0 )   &    |-  ( ph  ->  N  =/=  0 )   &    |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
 ( n  pCnt  M ) ) ,  1 ) )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  M ) )  =  (  seq 1
 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
 
Theoremlgsdi 13732 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
 
Theoremlgsne0 13733 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A 
 /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgsabs1 13734 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgssq 13735 The Legendre symbol at a square is equal to  1. Together with lgsmod 13721 this implies that the Legendre symbol takes value  1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A 
 gcd  N )  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
 
Theoremlgssq2 13736 The Legendre symbol at a square is equal to  1. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  ( A  gcd  N )  =  1 )  ->  ( A  /L
 ( N ^ 2
 ) )  =  1 )
 
Theoremlgsprme0 13737 The Legendre symbol at any prime (even at 2) is  0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( ( A  /L P )  =  0  <-> 
 ( A  mod  P )  =  0 )
 )
 
Theorem1lgs 13738 The Legendre symbol at  1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( N  e.  ZZ  ->  ( 1  /L N )  =  1
 )
 
Theoremlgs1 13739 The Legendre symbol at  1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 1 )  =  1 )
 
Theoremlgsmodeq 13740 The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( N  e.  NN  /\ 
 -.  2  ||  N ) )  ->  ( ( A  mod  N )  =  ( B  mod  N )  ->  ( A  /L N )  =  ( B  /L N ) ) )
 
Theoremlgsmulsqcoprm 13741 The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  ->  ( ( ( A ^ 2 )  x.  B )  /L N )  =  ( B  /L N ) )
 
Theoremlgsdirnn0 13742 Variation on lgsdir 13730 valid for all  A ,  B but only for positive  N. (The exact location of the failure of this law is for  A  =  0,  B  <  0,  N  =  -u 1 in which case  ( 0  /L -u 1
)  =  1 but  ( B  /L -u 1 )  = 
-u 1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
 
Theoremlgsdinn0 13743 Variation on lgsdi 13732 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
 ( M  x.  N ) )  =  (
 ( A  /L M )  x.  ( A  /L N ) ) )
 
10.2.2  All primes 4n+1 are the sum of two squares
 
Theorem2sqlem1 13744* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( A  e.  S  <->  E. x  e.  ZZ[_i]  A  =  ( ( abs `  x ) ^ 2 ) )
 
Theorem2sqlem2 13745* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) )
 
Theoremmul2sq 13746 Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B )  e.  S )
 
Theorem2sqlem3 13747 Lemma for 2sqlem5 13749. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )   &    |-  ( ph  ->  P 
 ||  ( ( C  x.  B )  +  ( A  x.  D ) ) )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem4 13748 Lemma for 2sqlem5 13749. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem5 13749 Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  ( N  x.  P )  e.  S )   &    |-  ( ph  ->  P  e.  S )   =>    |-  ( ph  ->  N  e.  S )
 
Theorem2sqlem6 13750* Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  A. p  e.  Prime  ( p  ||  B  ->  p  e.  S ) )   &    |-  ( ph  ->  ( A  x.  B )  e.  S )   =>    |-  ( ph  ->  A  e.  S )
 
Theorem2sqlem7 13751* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   =>    |-  Y  C_  ( S  i^i  NN )
 
Theorem2sqlem8a 13752* Lemma for 2sqlem8 13753. (Contributed by Mario Carneiro, 4-Jun-2016.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  ( A  gcd  B )  =  1 )   &    |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  C  =  ( ( ( A  +  ( M  /  2
 ) )  mod  M )  -  ( M  / 
 2 ) )   &    |-  D  =  ( ( ( B  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   =>    |-  ( ph  ->  ( C  gcd  D )  e.  NN )
 
Theorem2sqlem8 13753* Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  ( A  gcd  B )  =  1 )   &    |-  ( ph  ->  N  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )   &    |-  C  =  ( ( ( A  +  ( M  /  2
 ) )  mod  M )  -  ( M  / 
 2 ) )   &    |-  D  =  ( ( ( B  +  ( M  / 
 2 ) )  mod  M )  -  ( M 
 /  2 ) )   &    |-  E  =  ( C  /  ( C  gcd  D ) )   &    |-  F  =  ( D  /  ( C 
 gcd  D ) )   =>    |-  ( ph  ->  M  e.  S )
 
Theorem2sqlem9 13754* Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   &    |-  ( ph  ->  A. b  e.  (
 1 ... ( M  -  1 ) ) A. a  e.  Y  (
 b  ||  a  ->  b  e.  S ) )   &    |-  ( ph  ->  M  ||  N )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  Y )   =>    |-  ( ph  ->  M  e.  S )
 
Theorem2sqlem10 13755* Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.)
 |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2
 ) )   &    |-  Y  =  {
 z  |  E. x  e.  ZZ  E. y  e. 
 ZZ  ( ( x 
 gcd  y )  =  1  /\  z  =  ( ( x ^
 2 )  +  (
 y ^ 2 ) ) ) }   =>    |-  ( ( A  e.  Y  /\  B  e.  NN  /\  B  ||  A )  ->  B  e.  S )
 
PART 11  GUIDES AND MISCELLANEA
 
11.1  Guides (conventions, explanations, and examples)
 
11.1.1  Conventions

This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:

  • Axioms of propositional calculus - Stanford Encyclopedia of Philosophy or [Heyting].
  • Axioms of predicate calculus - our axioms are adapted from the ones in the Metamath Proof Explorer.
  • Theorems of propositional calculus - [Heyting].
  • Theorems of pure predicate calculus - Metamath Proof Explorer.
  • Theorems of equality and substitution - Metamath Proof Explorer.
  • Axioms of set theory - [Crosilla].
  • Development of set theory - Chapter 10 of [HoTT].
  • Construction of real and complex numbers - Chapter 11 of [HoTT]; [BauerTaylor].
  • Theorems about real numbers - [Geuvers].
 
Theoremconventions 13756 Unless there is a reason to diverge, we follow the conventions of the Metamath Proof Explorer (MPE, set.mm). This list of conventions is intended to be read in conjunction with the corresponding conventions in the Metamath Proof Explorer, and only the differences are described below.
  • Minimizing axioms and the axiom of choice. We prefer proofs that depend on fewer and/or weaker axioms, even if the proofs are longer. In particular, our choice of IZF (Intuitionistic Zermelo-Fraenkel) over CZF (Constructive Zermelo-Fraenkel, a weaker system) was just an expedient choice because IZF is easier to formalize in Metamath. You can find some development using CZF in BJ's mathbox starting at wbd 13847 (and the section header just above it). As for the axiom of choice, the full axiom of choice implies excluded middle as seen at acexmid 5852, although some authors will use countable choice or dependent choice. For example, countable choice or excluded middle is needed to show that the Cauchy reals coincide with the Dedekind reals - Corollary 11.4.3 of [HoTT], p. (varies).
  • Junk/undefined results. Much of the discussion of this topic in the Metamath Proof Explorer applies except that certain techniques are not available to us. For example, the Metamath Proof Explorer will often say "if a function is evaluated within its domain, a certain result follows; if the function is evaluated outside its domain, the same result follows. Since the function must be evaluated within its domain or outside it, the result follows unconditionally" (the use of excluded middle in this argument is perhaps obvious when stated this way). Often, the easiest fix will be to prove we are evaluating functions within their domains, other times it will be possible to use a theorem like relelfvdm 5528 which says that if a function value produces an inhabited set, then the function is being evaluated within its domain.
  • Bibliography references. The bibliography for the Intuitionistic Logic Explorer is separate from the one for the Metamath Proof Explorer but feel free to copy-paste a citation in either direction in order to cite it.

Label naming conventions

Here are a few of the label naming conventions:

  • Suffixes. We follow the conventions of the Metamath Proof Explorer with a few additions. A biconditional in set.mm which is an implication in iset.mm should have a "r" (for the reverse direction), or "i"/"im" (for the forward direction) appended. A theorem in set.mm which has a decidability condition added should add "dc" to the theorem name. A theorem in set.mm where "nonempty class" is changed to "inhabited class" should add "m" (for member) to the theorem name.
  • iset.mm versus set.mm names

    Theorems which are the same as in set.mm should be named the same (that is, where the statement of the theorem is the same; the proof can differ without a new name being called for). Theorems which are different should be named differently (we do have a small number of intentional exceptions to this rule but on the whole it serves us well).

    As for how to choose names so they are different between iset.mm and set.mm, when possible choose a name which reflect the difference in the theorems. For example, if a theorem in set.mm is an equality and the iset.mm analogue is a subset, add "ss" to the iset.mm name. If need be, add "i" to the iset.mm name (usually as a prefix to some portion of the name).

    As with set.mm, we welcome suggestions for better names (such as names which are more consistent with naming conventions).

    We do try to keep set.mm and iset.mm similar where we can. For example, if a theorem exists in both places but the name in set.mm isn't great, we tend to keep that name for iset.mm, or change it in both files together. This is mainly to make it easier to copy theorems, but also to generally help people browse proofs, find theorems, write proofs, etc.

The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME.

For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.

AbbreviationMnenomic/MeaningSource ExpressionSyntax?Example(s)
apapart df-ap 8501 Yes apadd1 8527, apne 8542
gwith "is a set" condition No 1stvalg 6121, brtposg 6233, setsmsbasg 13273
seq3, sum3recursive sequence df-seqfrec 10402 Yes seq3-1 10416, fsum3 11350

(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.)

 |-  ph   =>    |-  ph
 
11.1.2  Definitional examples
 
Theoremex-or 13757 Example for ax-io 704. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  ( 2  =  3  \/  4  =  4 )
 
Theoremex-an 13758 Example for ax-ia1 105. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  ( 2  =  2 
 /\  3  =  3 )
 
Theorem1kp2ke3k 13759 Example for df-dec 9344, 1000 + 2000 = 3000.

This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.)

This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."

The proof here starts with  ( 2  +  1 )  =  3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted.

This proof heavily relies on the decimal constructor df-dec 9344 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits.

(Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)

 |-  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0
 
Theoremex-fl 13760 Example for df-fl 10226. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ( |_ `  (
 3  /  2 )
 )  =  1  /\  ( |_ `  -u (
 3  /  2 )
 )  =  -u 2
 )
 
Theoremex-ceil 13761 Example for df-ceil 10227. (Contributed by AV, 4-Sep-2021.)
 |-  ( ( `  (
 3  /  2 )
 )  =  2  /\  ( `  -u ( 3  / 
 2 ) )  =  -u 1 )
 
Theoremex-exp 13762 Example for df-exp 10476. (Contributed by AV, 4-Sep-2021.)
 |-  ( ( 5 ^
 2 )  = ; 2 5  /\  ( -u 3 ^ -u 2
 )  =  ( 1 
 /  9 ) )
 
Theoremex-fac 13763 Example for df-fac 10660. (Contributed by AV, 4-Sep-2021.)
 |-  ( ! `  5
 )  = ;; 1 2 0
 
Theoremex-bc 13764 Example for df-bc 10682. (Contributed by AV, 4-Sep-2021.)
 |-  ( 5  _C  3
 )  = ; 1 0
 
Theoremex-dvds 13765 Example for df-dvds 11750: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.)
 |-  3  ||  6
 
Theoremex-gcd 13766 Example for df-gcd 11898. (Contributed by AV, 5-Sep-2021.)
 |-  ( -u 6  gcd  9
 )  =  3
 
PART 12  SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
 
12.1  Mathboxes for user contributions
 
12.1.1  Mathbox guidelines
 
Theoremmathbox 13767 (This theorem is a dummy placeholder for these guidelines. The label of this theorem, "mathbox", is hard-coded into the Metamath program to identify the start of the mathbox section for web page generation.)

A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm.

For contributors:

By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm.

Guidelines:

Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details.

(Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.)

 |-  ph   =>    |-  ph
 
12.2  Mathbox for BJ
 
12.2.1  Propositional calculus
 
Theorembj-nnsn 13768 As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 ( ph  ->  -.  ps ) 
 <->  ( -.  -.  ph  ->  -.  ps ) )
 
Theorembj-nnor 13769 Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.)
 |-  ( -.  -.  ( ph  \/  ps )  <->  ( -.  ph  ->  -.  -.  ps )
 )
 
Theorembj-nnim 13770 The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps )
 )
 
Theorembj-nnan 13771 The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ( ph  /\  ps )  ->  ( -.  -.  ph 
 /\  -.  -.  ps )
 )
 
Theorembj-nnclavius 13772 Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.)
 |-  (
 ( -.  ph  ->  ph )  ->  -.  -.  ph )
 
Theorembj-imnimnn 13773 If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 13772 as its last step. (Contributed by BJ, 27-Oct-2024.)
 |-  ( ph  ->  ps )   &    |-  ( -.  ph  ->  ps )   =>    |- 
 -.  -.  ps
 
12.2.1.1  Stable formulas

Some of the following theorems, like bj-sttru 13775 or bj-stfal 13777 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest.

 
Theorembj-trst 13774 A provable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> STAB  ph )
 
Theorembj-sttru 13775 The true truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB T.
 
Theorembj-fast 13776 A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> STAB  ph )
 
Theorembj-stfal 13777 The false truth value is stable. (Contributed by BJ, 5-Aug-2024.)
 |- STAB F.
 
Theorembj-nnst 13778 Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 14025 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in  (  ->  ,  -.  ) -intuitionistic calculus with definitions (uses of ax-ia1 105, ax-ia2 106, ax-ia3 107 are via sylibr 133, necessary for definition unpackaging), and in  (  ->  ,  <->  ,  -.  )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.)
 |-  -.  -. STAB  ph
 
Theorembj-nnbist 13779 If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if  ph is a classical tautology, then  -.  -.  ph is an intuitionistic tautology. Therefore, if  ph is a classical tautology, then  ph is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 13792). (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (STAB  ph  <->  ph ) )
 
Theorembj-stst 13780 Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.)
 |-  (STAB STAB  ph  <-> STAB  ph )
 
Theorembj-stim 13781 A conjunction with a stable consequent is stable. See stabnot 828 for negation , bj-stan 13782 for conjunction , and bj-stal 13784 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (STAB  ps  -> STAB  (
 ph  ->  ps ) )
 
Theorembj-stan 13782 The conjunction of two stable formulas is stable. See bj-stim 13781 for implication, stabnot 828 for negation, and bj-stal 13784 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
 |-  (
 (STAB  ph  /\ STAB 
 ps )  -> STAB  ( ph  /\  ps ) )
 
Theorembj-stand 13783 The conjunction of two stable formulas is stable. Deduction form of bj-stan 13782. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 13782 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  ( ph  -> STAB  ps )   &    |-  ( ph  -> STAB  ch )   =>    |-  ( ph  -> STAB 
 ( ps  /\  ch ) )
 
Theorembj-stal 13784 The universal quantification of a stable formula is stable. See bj-stim 13781 for implication, stabnot 828 for negation, and bj-stan 13782 for conjunction. (Contributed by BJ, 24-Nov-2023.)
 |-  ( A. xSTAB 
 ph  -> STAB  A. x ph )
 
Theorembj-pm2.18st 13785 Clavius law for stable formulas. See pm2.18dc 850. (Contributed by BJ, 4-Dec-2023.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ph )  ->  ph ) )
 
Theorembj-con1st 13786 Contraposition when the antecedent is a negated stable proposition. See con1dc 851. (Contributed by BJ, 11-Nov-2024.)
 |-  (STAB  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps 
 ->  ph ) ) )
 
12.2.1.2  Decidable formulas
 
Theorembj-trdc 13787 A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( ph  -> DECID  ph )
 
Theorembj-dctru 13788 The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID T.
 
Theorembj-fadc 13789 A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  ph  -> DECID  ph )
 
Theorembj-dcfal 13790 The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.)
 |- DECID F.
 
Theorembj-dcstab 13791 A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.)
 |-  (DECID  ph  -> STAB  ph )
 
Theorembj-nnbidc 13792 If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 13779. (Contributed by BJ, 24-Nov-2023.)
 |-  ( -.  -.  ph  ->  (DECID  ph  <->  ph ) )
 
Theorembj-nndcALT 13793 Alternate proof of nndc 846. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.)
 |-  -.  -. DECID  ph
 
Theorembj-dcdc 13794 Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.)
 |-  (DECID DECID  ph  <-> DECID  ph )
 
Theorembj-stdc 13795 Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.)
 |-  (STAB DECID  ph  <-> DECID  ph )
 
Theorembj-dcst 13796 Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.)
 |-  (DECID STAB  ph  <-> STAB  ph )
 
12.2.2  Predicate calculus
 
Theorembj-ex 13797* Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1591 and 19.9ht 1634 or 19.23ht 1490). (Proof modification is discouraged.)
 |-  ( E. x ph  ->  ph )
 
Theorembj-hbalt 13798 Closed form of hbal 1470 (copied from set.mm). (Contributed by BJ, 2-May-2019.)
 |-  ( A. y ( ph  ->  A. x ph )  ->  ( A. y ph  ->  A. x A. y ph ) )
 
Theorembj-nfalt 13799 Closed form of nfal 1569 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
 |-  ( A. x F/ y ph  ->  F/ y A. x ph )
 
Theoremspimd 13800 Deduction form of spim 1731. (Contributed by BJ, 17-Oct-2019.)
 |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  A. x ( x  =  y  ->  ( ps  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x ps  ->  ch )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >