HomeHome Intuitionistic Logic Explorer
Theorem List (p. 138 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13701-13800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsubrngringnsg 13701 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
 |-  ( A  e.  (SubRng `  R )  ->  A  e.  (NrmSGrp `  R )
 )
 
Theoremsubrngbas 13702 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  A  =  ( Base `  S )
 )
 
Theoremsubrng0 13703 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRng `  R )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubrngacl 13704 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
Theoremsubrngmcl 13705 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 13729. (Revised by AV, 14-Feb-2025.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRng `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
Theoremissubrng2 13706* Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( A  e.  (SubGrp `  R )  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
Theoremopprsubrngg 13707 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  (SubRng `  R )  =  (SubRng `  O )
 )
 
Theoremsubrngintm 13708* The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
 
Theoremsubrngin 13709 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  ( ( A  e.  (SubRng `  R )  /\  B  e.  (SubRng `  R ) )  ->  ( A  i^i  B )  e.  (SubRng `  R )
 )
 
Theoremsubsubrng 13710 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  ( B  e.  (SubRng `  S ) 
 <->  ( B  e.  (SubRng `  R )  /\  B  C_  A ) ) )
 
Theoremsubsubrng2 13711 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRng `  R )  ->  (SubRng `  S )  =  ( (SubRng `  R )  i^i  ~P A ) )
 
Theoremsubrngpropd 13712* If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRng `  K )  =  (SubRng `  L ) )
 
7.3.11.2  Subrings of unital rings
 
Syntaxcsubrg 13713 Extend class notation with all subrings of a ring.
 class SubRing
 
Syntaxcrgspn 13714 Extend class notation with span of a set of elements over a ring.
 class RingSpan
 
Definitiondf-subrg 13715* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset  ( ZZ  X.  {
0 } ) of  ( ZZ  X.  ZZ ) (where multiplication is componentwise) contains the false identity  <. 1 ,  0 >. which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

 |- SubRing  =  ( w  e.  Ring  |->  { s  e.  ~P ( Base `  w )  |  ( ( ws  s )  e.  Ring  /\  ( 1r
 `  w )  e.  s ) } )
 
Definitiondf-rgspn 13716* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |- RingSpan  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |-> 
 |^| { t  e.  (SubRing `  w )  |  s 
 C_  t } )
 )
 
Theoremissubrg 13717 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
 
Theoremsubrgss 13718 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  B  =  ( Base `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  C_  B )
 
Theoremsubrgid 13719 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
 |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  (SubRing `  R ) )
 
Theoremsubrgring 13720 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  S  e.  Ring )
 
Theoremsubrgcrng 13721 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( ( R  e.  CRing  /\  A  e.  (SubRing `  R ) )  ->  S  e.  CRing
 )
 
Theoremsubrgrcl 13722 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  ( A  e.  (SubRing `  R )  ->  R  e.  Ring )
 
Theoremsubrgsubg 13723 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  ( A  e.  (SubRing `  R )  ->  A  e.  (SubGrp `  R )
 )
 
Theoremsubrg0 13724 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubrg1cl 13725 A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |- 
 .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .1.  e.  A )
 
Theoremsubrgbas 13726 Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  =  ( Base `  S )
 )
 
Theoremsubrg1 13727 A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  .1.  =  ( 1r `  S ) )
 
Theoremsubrgacl 13728 A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .+  Y )  e.  A )
 
Theoremsubrgmcl 13729 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .x.  =  ( .r `  R )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .x.  Y )  e.  A )
 
Theoremsubrgsubm 13730 A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  A  e.  (SubMnd `  M )
 )
 
Theoremsubrgdvds 13731 If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  .||  =  ( ||r `  R )   &    |-  E  =  ( ||r `  S )   =>    |-  ( A  e.  (SubRing `  R )  ->  E  C_  .||  )
 
Theoremsubrguss 13732 A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   =>    |-  ( A  e.  (SubRing `  R )  ->  V  C_  U )
 
Theoremsubrginv 13733 A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  I  =  (
 invr `  R )   &    |-  U  =  (Unit `  S )   &    |-  J  =  ( invr `  S )   =>    |-  (
 ( A  e.  (SubRing `  R )  /\  X  e.  U )  ->  ( I `  X )  =  ( J `  X ) )
 
Theoremsubrgdv 13734 A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  ./  =  (/r `  R )   &    |-  U  =  (Unit `  S )   &    |-  E  =  (/r `  S )   =>    |-  ( ( A  e.  (SubRing `  R )  /\  X  e.  A  /\  Y  e.  U )  ->  ( X  ./  Y )  =  ( X E Y ) )
 
Theoremsubrgunit 13735 An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   &    |-  I  =  (
 invr `  R )   =>    |-  ( A  e.  (SubRing `  R )  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X )  e.  A ) ) )
 
Theoremsubrgugrp 13736 The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   &    |-  U  =  (Unit `  R )   &    |-  V  =  (Unit `  S )   &    |-  G  =  ( (mulGrp `  R )s  U )   =>    |-  ( A  e.  (SubRing `  R )  ->  V  e.  (SubGrp `  G )
 )
 
Theoremissubrg2 13737* Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  B  =  ( Base `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  .x. 
 =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R )  <->  ( A  e.  (SubGrp `  R )  /\  .1.  e.  A  /\  A. x  e.  A  A. y  e.  A  ( x  .x.  y )  e.  A ) ) )
 
Theoremsubrgnzr 13738 A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( ( R  e. NzRing  /\  A  e.  (SubRing `  R ) )  ->  S  e. NzRing )
 
Theoremsubrgintm 13739* The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( S  C_  (SubRing `  R )  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubRing `  R ) )
 
Theoremsubrgin 13740 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( A  e.  (SubRing `  R )  /\  B  e.  (SubRing `  R ) )  ->  ( A  i^i  B )  e.  (SubRing `  R )
 )
 
Theoremsubsubrg 13741 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  ( B  e.  (SubRing `  S ) 
 <->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) ) )
 
Theoremsubsubrg2 13742 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  S  =  ( Rs  A )   =>    |-  ( A  e.  (SubRing `  R )  ->  (SubRing `  S )  =  ( (SubRing `  R )  i^i  ~P A ) )
 
Theoremissubrg3 13743 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R )  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
 
Theoremresrhm 13744 Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  U  =  ( Ss  X )   =>    |-  ( ( F  e.  ( S RingHom  T )  /\  X  e.  (SubRing `  S ) )  ->  ( F  |`  X )  e.  ( U RingHom  T ) )
 
Theoremresrhm2b 13745 Restriction of the codomain of a (ring) homomorphism. resghm2b 13332 analog. (Contributed by SN, 7-Feb-2025.)
 |-  U  =  ( Ts  X )   =>    |-  ( ( X  e.  (SubRing `  T )  /\  ran 
 F  C_  X )  ->  ( F  e.  ( S RingHom  T )  <->  F  e.  ( S RingHom  U ) ) )
 
Theoremrhmeql 13746 The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( S RingHom  T )  /\  G  e.  ( S RingHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubRing `  S )
 )
 
Theoremrhmima 13747 The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  ( ( F  e.  ( M RingHom  N )  /\  X  e.  (SubRing `  M ) )  ->  ( F
 " X )  e.  (SubRing `  N )
 )
 
Theoremrnrhmsubrg 13748 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
 |-  ( F  e.  ( M RingHom  N )  ->  ran  F  e.  (SubRing `  N )
 )
 
Theoremsubrgpropd 13749* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  (SubRing `  K )  =  (SubRing `  L ) )
 
Theoremrhmpropd 13750* Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  J ) y )  =  ( x ( .r `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r
 `  M ) y ) )   =>    |-  ( ph  ->  ( J RingHom  K )  =  ( L RingHom  M ) )
 
7.3.12  Left regular elements and domains
 
Syntaxcrlreg 13751 Set of left-regular elements in a ring.
 class RLReg
 
Syntaxcdomn 13752 Class of (ring theoretic) domains.
 class Domn
 
Syntaxcidom 13753 Class of integral domains.
 class IDomn
 
Definitiondf-rlreg 13754* Define the set of left-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |- RLReg  =  ( r  e.  _V  |->  { x  e.  ( Base `  r )  |  A. y  e.  ( Base `  r ) ( ( x ( .r `  r ) y )  =  ( 0g `  r )  ->  y  =  ( 0g `  r
 ) ) } )
 
Definitiondf-domn 13755* A domain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |- Domn  =  { r  e. NzRing  |  [. ( Base `  r )  /  b ]. [. ( 0g `  r )  /  z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
 ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
 
Definitiondf-idom 13756 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
 |- IDomn  =  ( CRing  i^i Domn )
 
Theoremrrgmex 13757 A structure whose set of left-regular elements is inhabited is a set. (Contributed by Jim Kingdon, 12-Aug-2025.)
 |-  E  =  (RLReg `  R )   =>    |-  ( A  e.  E  ->  R  e.  _V )
 
Theoremrrgval 13758* Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  E  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .x.  y )  =  .0.  ->  y  =  .0.  ) }
 
Theoremisrrg 13759* Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  ( ( X  .x.  y
 )  =  .0.  ->  y  =  .0.  ) ) )
 
Theoremrrgeq0i 13760 Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( X  e.  E  /\  Y  e.  B )  ->  ( ( X 
 .x.  Y )  =  .0. 
 ->  Y  =  .0.  )
 )
 
Theoremrrgeq0 13761 Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Ring  /\  X  e.  E  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0.  <->  Y  =  .0.  ) )
 
Theoremrrgss 13762 Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  B  =  (
 Base `  R )   =>    |-  E  C_  B
 
Theoremunitrrg 13763 Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  E  =  (RLReg `  R )   &    |-  U  =  (Unit `  R )   =>    |-  ( R  e.  Ring  ->  U  C_  E )
 
Theoremrrgnz 13764 In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025.)
 |-  E  =  (RLReg `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. NzRing  ->  -.  .0.  e.  E )
 
Theoremisdomn 13765* Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Domn  <->  ( R  e. NzRing  /\ 
 A. x  e.  B  A. y  e.  B  ( ( x  .x.  y
 )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
 ) ) )
 
Theoremdomnnzr 13766 A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  ( R  e. Domn  ->  R  e. NzRing )
 
Theoremdomnring 13767 A domain is a ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  ( R  e. Domn  ->  R  e.  Ring )
 
Theoremdomneq0 13768 In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
 
Theoremdomnmuln0 13769 In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/=  .0.  )
 )  ->  ( X  .x.  Y )  =/=  .0.  )
 
Theoremopprdomnbg 13770 A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13771. (Contributed by SN, 15-Jun-2015.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e.  V  ->  ( R  e. Domn  <->  O  e. Domn ) )
 
Theoremopprdomn 13771 The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  O  =  (oppr `  R )   =>    |-  ( R  e. Domn  ->  O  e. Domn )
 
Theoremisidom 13772 An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
 |-  ( R  e. IDomn  <->  ( R  e.  CRing  /\  R  e. Domn ) )
 
Theoremidomdomd 13773 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e. Domn )
 
Theoremidomcringd 13774 An integral domain is a commutative ring with unity. (Contributed by Thierry Arnoux, 4-May-2025.) (Proof shortened by SN, 14-May-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  CRing )
 
Theoremidomringd 13775 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
 |-  ( ph  ->  R  e. IDomn )   =>    |-  ( ph  ->  R  e.  Ring )
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 13776 Extend class notation with ring apartness.
 class #r
 
Definitiondf-apr 13777* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13782. (Contributed by Jim Kingdon, 13-Feb-2025.)
 |- #r  =  ( w  e.  _V  |->  {
 <. x ,  y >.  |  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w ) ) 
 /\  ( x (
 -g `  w )
 y )  e.  (Unit `  w ) ) }
 )
 
Theoremaprval 13778 Expand Definition df-apr 13777. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  .-  =  ( -g `  R ) )   &    |-  ( ph  ->  U  =  (Unit `  R ) )   &    |-  ( ph  ->  R  e.  Ring
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  <->  ( X  .-  Y )  e.  U ) )
 
Theoremaprirr 13779 The apartness relation given by df-apr 13777 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  ( 1r `  R )  =/=  ( 0g `  R ) )   =>    |-  ( ph  ->  -.  X #  X )
 
Theoremaprsym 13780 The apartness relation given by df-apr 13777 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  Y #  X ) )
 
Theoremaprcotr 13781 The apartness relation given by df-apr 13777 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  R )
 )   &    |-  ( ph  -> #  =  (#r `  R ) )   &    |-  ( ph  ->  R  e. LRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X #  Y  ->  ( X #  Z  \/  Y #  Z ) ) )
 
Theoremaprap 13782 The relation given by df-apr 13777 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
 |-  ( R  e. LRing  ->  (#r `  R ) Ap  ( Base `  R ) )
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 13783 Extend class notation with class of all left modules.
 class  LMod
 
Syntaxcscaf 13784 The functionalization of the scalar multiplication operation.
 class  .sf
 
Definitiondf-lmod 13785* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
 |- 
 LMod  =  { g  e.  Grp  |  [. ( Base `  g )  /  v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
 )  /  f ]. [. ( .s `  g
 )  /  s ]. [. ( Base `  f )  /  k ]. [. ( +g  `  f )  /  p ]. [. ( .r
 `  f )  /  t ]. ( f  e. 
 Ring  /\  A. q  e.  k  A. r  e.  k  A. x  e.  v  A. w  e.  v  ( ( ( r s w )  e.  v  /\  (
 r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  (
 ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  ( ( ( q t r ) s w )  =  ( q s ( r s w ) ) 
 /\  ( ( 1r
 `  f ) s w )  =  w ) ) ) }
 
Definitiondf-scaf 13786* Define the functionalization of the 
.s operator. This restricts the value of  .s to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |- 
 .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
 ) ,  y  e.  ( Base `  g )  |->  ( x ( .s
 `  g ) y ) ) )
 
Theoremislmod 13787* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  <->  ( W  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( r  .x.  w )  e.  V  /\  ( r 
 .x.  ( w  .+  x ) )  =  ( ( r  .x.  w )  .+  ( r 
 .x.  x ) ) 
 /\  ( ( q  .+^  r )  .x.  w )  =  ( (
 q  .x.  w )  .+  ( r  .x.  w ) ) )  /\  ( ( ( q 
 .X.  r )  .x.  w )  =  (
 q  .x.  ( r  .x.  w ) )  /\  (  .1.  .x.  w )  =  w ) ) ) )
 
Theoremlmodlema 13788 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K ) 
 /\  ( X  e.  V  /\  Y  e.  V ) )  ->  ( ( ( R  .x.  Y )  e.  V  /\  ( R  .x.  ( Y 
 .+  X ) )  =  ( ( R 
 .x.  Y )  .+  ( R  .x.  X ) ) 
 /\  ( ( Q  .+^  R )  .x.  Y )  =  ( ( Q  .x.  Y )  .+  ( R  .x.  Y ) ) )  /\  (
 ( ( Q  .X.  R )  .x.  Y )  =  ( Q  .x.  ( R  .x.  Y ) ) 
 /\  (  .1.  .x.  Y )  =  Y ) ) )
 
Theoremislmodd 13789* Properties that determine a left module. See note in isgrpd2 13093 regarding the  ph on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
 |-  ( ph  ->  V  =  ( Base `  W )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  W )
 )   &    |-  ( ph  ->  F  =  (Scalar `  W )
 )   &    |-  ( ph  ->  .x.  =  ( .s `  W ) )   &    |-  ( ph  ->  B  =  ( Base `  F ) )   &    |-  ( ph  ->  .+^  =  ( +g  `  F ) )   &    |-  ( ph  ->  .X. 
 =  ( .r `  F ) )   &    |-  ( ph  ->  .1.  =  ( 1r `  F ) )   &    |-  ( ph  ->  F  e.  Ring
 )   &    |-  ( ph  ->  W  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  V )  ->  ( x  .x.  y
 )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  V  /\  z  e.  V )
 )  ->  ( x  .x.  ( y  .+  z
 ) )  =  ( ( x  .x.  y
 )  .+  ( x  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .+^  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  V )
 )  ->  ( ( x  .X.  y )  .x.  z )  =  ( x  .x.  ( y  .x.  z ) ) )   &    |-  ( ( ph  /\  x  e.  V )  ->  (  .1.  .x.  x )  =  x )   =>    |-  ( ph  ->  W  e.  LMod )
 
Theoremlmodgrp 13790 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Grp )
 
Theoremlmodring 13791 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Ring )
 
Theoremlmodfgrp 13792 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   =>    |-  ( W  e.  LMod  ->  F  e.  Grp )
 
Theoremlmodgrpd 13793 A left module is a group. (Contributed by SN, 16-May-2024.)
 |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  W  e.  Grp )
 
Theoremlmodbn0 13794 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13813). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  B  =  ( Base `  W )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodacl 13795 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .+  Y )  e.  K )
 
Theoremlmodmcl 13796 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )
 
Theoremlmodsn0 13797 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13810. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   =>    |-  ( W  e.  LMod  ->  B  =/=  (/) )
 
Theoremlmodvacl 13798 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  e.  V )
 
Theoremlmodass 13799 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremlmodlcan 13800 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V  /\  Z  e.  V ) )  ->  ( ( Z  .+  X )  =  ( Z  .+  Y )  <->  X  =  Y ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >