Home | Intuitionistic Logic Explorer Theorem List (p. 138 of 141) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||
Theorem | lgssq2 13701 | The Legendre symbol at a square is equal to . (Contributed by Mario Carneiro, 5-Feb-2015.) | ||||||||||||||||||||||||
Theorem | lgsprme0 13702 | The Legendre symbol at any prime (even at 2) is iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
Theorem | 1lgs 13703 | The Legendre symbol at . See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
Theorem | lgs1 13704 | The Legendre symbol at . See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
Theorem | lgsmodeq 13705 | The Legendre (Jacobi) symbol is preserved under reduction when is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
Theorem | lgsmulsqcoprm 13706 | The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) | ||||||||||||||||||||||||
Theorem | lgsdirnn0 13707 | Variation on lgsdir 13695 valid for all but only for positive . (The exact location of the failure of this law is for , , in which case but .) (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
Theorem | lgsdinn0 13708 | Variation on lgsdi 13697 valid for all but only for positive . (The exact location of the failure of this law is for , , and some in which case but when is not a quadratic residue mod .) (Contributed by Mario Carneiro, 28-Apr-2016.) | ||||||||||||||||||||||||
Theorem | 2sqlem1 13709* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem2 13710* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
Theorem | mul2sq 13711 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem3 13712 | Lemma for 2sqlem5 13714. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem4 13713 | Lemma for 2sqlem5 13714. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem5 13714 | Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem6 13715* | Lemma for 2sq . If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem7 13716* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem8a 13717* | Lemma for 2sqlem8 13718. (Contributed by Mario Carneiro, 4-Jun-2016.) | ||||||||||||||||||||||||
Theorem | 2sqlem8 13718* | Lemma for 2sq . (Contributed by Mario Carneiro, 20-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem9 13719* | Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
Theorem | 2sqlem10 13720* | Lemma for 2sq . Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) | ||||||||||||||||||||||||
This section describes the conventions we use. These conventions often refer to existing mathematical practices, which are discussed in more detail in other references. The following sources lay out how mathematics is developed without the law of the excluded middle. Of course, there are a greater number of sources which assume excluded middle and most of what is in them applies here too (especially in a treatment such as ours which is built on first-order logic and set theory, rather than, say, type theory). Studying how a topic is treated in the Metamath Proof Explorer and the references therein is often a good place to start (and is easy to compare with the Intuitionistic Logic Explorer). The textbooks provide a motivation for what we are doing, whereas Metamath lets you see in detail all hidden and implicit steps. Most standard theorems are accompanied by citations. Some closely followed texts include the following:
| ||||||||||||||||||||||||||
Theorem | conventions 13721 |
Unless there is a reason to diverge, we follow the conventions of the
Metamath Proof Explorer (MPE, set.mm). This list of conventions is
intended to be read in conjunction with the corresponding conventions in
the Metamath Proof Explorer, and only the differences are described
below.
Label naming conventions Here are a few of the label naming conventions:
The following table shows some commonly-used abbreviations in labels which are not found in the Metamath Proof Explorer, in alphabetical order. For each abbreviation we provide a mnenomic to help you remember it, the source theorem/assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. For the "g" abbreviation, this is related to the set.mm usage, in which "is a set" conditions are converted from hypotheses to antecedents, but is also used where "is a set" conditions are added relative to similar set.mm theorems.
(Contributed by Jim Kingdon, 24-Feb-2020.) (New usage is discouraged.) | ||||||||||||||||||||||||
Theorem | ex-or 13722 | Example for ax-io 704. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||
Theorem | ex-an 13723 | Example for ax-ia1 105. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.) | ||||||||||||||||||||||||
Theorem | 1kp2ke3k 13724 |
Example for df-dec 9337, 1000 + 2000 = 3000.
This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.) This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision." The proof here starts with , commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted. This proof heavily relies on the decimal constructor df-dec 9337 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits. (Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.) | ||||||||||||||||||||||||
;;; ;;; ;;; | ||||||||||||||||||||||||||
Theorem | ex-fl 13725 | Example for df-fl 10219. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) | ||||||||||||||||||||||||
Theorem | ex-ceil 13726 | Example for df-ceil 10220. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
⌈ ⌈ | ||||||||||||||||||||||||||
Theorem | ex-exp 13727 | Example for df-exp 10469. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
; | ||||||||||||||||||||||||||
Theorem | ex-fac 13728 | Example for df-fac 10653. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
;; | ||||||||||||||||||||||||||
Theorem | ex-bc 13729 | Example for df-bc 10675. (Contributed by AV, 4-Sep-2021.) | ||||||||||||||||||||||||
; | ||||||||||||||||||||||||||
Theorem | ex-dvds 13730 | Example for df-dvds 11743: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) | ||||||||||||||||||||||||
Theorem | ex-gcd 13731 | Example for df-gcd 11891. (Contributed by AV, 5-Sep-2021.) | ||||||||||||||||||||||||
Theorem | mathbox 13732 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of iset.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of iset.mm. Guidelines: Mathboxes in iset.mm follow the same practices as in set.mm, so refer to the mathbox guidelines there for more details. (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (New usage is discouraged.) | ||||||||||||||||||||||||
Theorem | bj-nnsn 13733 | As far as implying a negated formula is concerned, a formula is equivalent to its double negation. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
Theorem | bj-nnor 13734 | Double negation of a disjunction in terms of implication. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
Theorem | bj-nnim 13735 | The double negation of an implication implies the implication with the consequent doubly negated. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
Theorem | bj-nnan 13736 | The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
Theorem | bj-nnclavius 13737 | Clavius law with doubly negated consequent. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||
Theorem | bj-imnimnn 13738 | If a formula is implied by both a formula and its negation, then it is not refutable. There is another proof using the inference associated with bj-nnclavius 13737 as its last step. (Contributed by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||
Some of the following theorems, like bj-sttru 13740 or bj-stfal 13742 could be deduced from their analogues for decidability, but stability is not provable from decidability in minimal calculus, so direct proofs have their interest. | ||||||||||||||||||||||||||
Theorem | bj-trst 13739 | A provable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-sttru 13740 | The true truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-fast 13741 | A refutable formula is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-stfal 13742 | The false truth value is stable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-nnst 13743 | Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 13990 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in -intuitionistic calculus with definitions (uses of ax-ia1 105, ax-ia2 106, ax-ia3 107 are via sylibr 133, necessary for definition unpackaging), and in -intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-nnbist 13744 | If a formula is not refutable, then it is stable if and only if it is provable. By double-negation translation, if is a classical tautology, then is an intuitionistic tautology. Therefore, if is a classical tautology, then is intuitionistically equivalent to its stability (and to its decidability, see bj-nnbidc 13757). (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-stst 13745 | Stability of a proposition is stable if and only if that proposition is stable. STAB is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
STAB STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-stim 13746 | A conjunction with a stable consequent is stable. See stabnot 828 for negation , bj-stan 13747 for conjunction , and bj-stal 13749 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-stan 13747 | The conjunction of two stable formulas is stable. See bj-stim 13746 for implication, stabnot 828 for negation, and bj-stal 13749 for universal quantification. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-stand 13748 | The conjunction of two stable formulas is stable. Deduction form of bj-stan 13747. Its proof is shorter (when counting all steps, including syntactic steps), so one could prove it first and then bj-stan 13747 from it, the usual way. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
STAB STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-stal 13749 | The universal quantification of a stable formula is stable. See bj-stim 13746 for implication, stabnot 828 for negation, and bj-stan 13747 for conjunction. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-pm2.18st 13750 | Clavius law for stable formulas. See pm2.18dc 850. (Contributed by BJ, 4-Dec-2023.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-con1st 13751 | Contraposition when the antecedent is a negated stable proposition. See con1dc 851. (Contributed by BJ, 11-Nov-2024.) | ||||||||||||||||||||||||
STAB | ||||||||||||||||||||||||||
Theorem | bj-trdc 13752 | A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-dctru 13753 | The true truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-fadc 13754 | A refutable formula is decidable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-dcfal 13755 | The false truth value is decidable. (Contributed by BJ, 5-Aug-2024.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-dcstab 13756 | A decidable formula is stable. (Contributed by BJ, 24-Nov-2023.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
DECID STAB | ||||||||||||||||||||||||||
Theorem | bj-nnbidc 13757 | If a formula is not refutable, then it is decidable if and only if it is provable. See also comment of bj-nnbist 13744. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-nndcALT 13758 | Alternate proof of nndc 846. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
DECID | ||||||||||||||||||||||||||
Theorem | bj-dcdc 13759 | Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
DECID DECID DECID | ||||||||||||||||||||||||||
Theorem | bj-stdc 13760 | Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.) | ||||||||||||||||||||||||
STAB DECID DECID | ||||||||||||||||||||||||||
Theorem | bj-dcst 13761 | Stability of a proposition is decidable if and only if that proposition is stable. (Contributed by BJ, 24-Nov-2023.) | ||||||||||||||||||||||||
DECID STAB STAB | ||||||||||||||||||||||||||
Theorem | bj-ex 13762* | Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1591 and 19.9ht 1634 or 19.23ht 1490). (Proof modification is discouraged.) | ||||||||||||||||||||||||
Theorem | bj-hbalt 13763 | Closed form of hbal 1470 (copied from set.mm). (Contributed by BJ, 2-May-2019.) | ||||||||||||||||||||||||
Theorem | bj-nfalt 13764 | Closed form of nfal 1569 (copied from set.mm). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
Theorem | spimd 13765 | Deduction form of spim 1731. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||
Theorem | 2spim 13766* | Double substitution, as in spim 1731. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||
Theorem | ch2var 13767* | Implicit substitution of for and for into a theorem. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||
Theorem | ch2varv 13768* | Version of ch2var 13767 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) | ||||||||||||||||||||||||
Theorem | bj-exlimmp 13769 | Lemma for bj-vtoclgf 13776. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
Theorem | bj-exlimmpi 13770 | Lemma for bj-vtoclgf 13776. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | ||||||||||||||||||||||||
Theorem | bj-sbimedh 13771 | A strengthening of sbiedh 1780 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||
Theorem | bj-sbimeh 13772 | A strengthening of sbieh 1783 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||
Theorem | bj-sbime 13773 | A strengthening of sbie 1784 (same proof). (Contributed by BJ, 16-Dec-2019.) | ||||||||||||||||||||||||
Theorem | bj-el2oss1o 13774 | Shorter proof of el2oss1o 6420 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | ||||||||||||||||||||||||
Various utility theorems using FOL and extensionality. | ||||||||||||||||||||||||||
Theorem | bj-vtoclgft 13775 | Weakening two hypotheses of vtoclgf 2788. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-vtoclgf 13776 | Weakening two hypotheses of vtoclgf 2788. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabgf0 13777 | Lemma for elabgf 2872. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabgft1 13778 | One implication of elabgf 2872, in closed form. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabgf1 13779 | One implication of elabgf 2872. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabgf2 13780 | One implication of elabgf 2872. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabf1 13781* | One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabf2 13782* | One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elab1 13783* | One implication of elab 2874. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elab2a 13784* | One implication of elab 2874. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | elabg2 13785* | One implication of elabg 2876. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-rspgt 13786 | Restricted specialization, generalized. Weakens a hypothesis of rspccv 2831 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-rspg 13787 | Restricted specialization, generalized. Weakens a hypothesis of rspccv 2831 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) | ||||||||||||||||||||||||
Theorem | cbvrald 13788* | Rule used to change bound variables, using implicit substitution. (Contributed by BJ, 22-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-intabssel 13789 | Version of intss1 3844 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-intabssel1 13790 | Version of intss1 3844 using a class abstraction and implicit substitution. Closed form of intmin3 3856. (Contributed by BJ, 29-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-elssuniab 13791 | Version of elssuni 3822 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) | ||||||||||||||||||||||||
Theorem | bj-sseq 13792 | If two converse inclusions are characterized each by a formula, then equality is characterized by the conjunction of these formulas. (Contributed by BJ, 30-Nov-2019.) | ||||||||||||||||||||||||
The question of decidability is essential in intuitionistic logic. In intuitionistic set theories, it is natural to define decidability of a set (or class) as decidability of membership in it. One can parameterize this notion with another set (or class) since it is often important to assess decidability of membership in one class among elements of another class. Namely, one will say that " is decidable in " if DECID (see df-dcin 13794). Note the similarity with the definition of a bounded class as a class for which membership in it is a bounded proposition (df-bdc 13841). | ||||||||||||||||||||||||||
Syntax | wdcin 13793 | Syntax for decidability of a class in another. | ||||||||||||||||||||||||
DECIDin | ||||||||||||||||||||||||||
Definition | df-dcin 13794* | Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECIDin DECID | ||||||||||||||||||||||||||
Theorem | decidi 13795 | Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECIDin | ||||||||||||||||||||||||||
Theorem | decidr 13796* | Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECIDin | ||||||||||||||||||||||||||
Theorem | decidin 13797 | If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECIDin DECIDin DECIDin | ||||||||||||||||||||||||||
Theorem | uzdcinzz 13798 | An upperset of integers is decidable in the integers. Reformulation of eluzdc 9562. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECIDin | ||||||||||||||||||||||||||
Theorem | sumdc2 13799* | Alternate proof of sumdc 11314, without disjoint variable condition on (longer because the statement is taylored to the proof sumdc 11314). (Contributed by BJ, 19-Feb-2022.) | ||||||||||||||||||||||||
DECID DECID | ||||||||||||||||||||||||||
Theorem | djucllem 13800* | Lemma for djulcl 7026 and djurcl 7027. (Contributed by BJ, 4-Jul-2022.) | ||||||||||||||||||||||||
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |