Step | Hyp | Ref
| Expression |
1 | | conjsubg.f |
. . . . . . 7
       |
2 | | oveq2 5905 |
. . . . . . . 8
                          
      |
3 | 2 | oveq1d 5912 |
. . . . . . 7
                
                    |
4 | | subgrcl 13135 |
. . . . . . . . . 10
 SubGrp 
  |
5 | 4 | ad2antrr 488 |
. . . . . . . . 9
   SubGrp      |
6 | | conjghm.x |
. . . . . . . . . 10
     |
7 | | eqid 2189 |
. . . . . . . . . 10
           |
8 | | conjnmz.1 |
. . . . . . . . . . . 12
          |
9 | 8 | ssrab3 3256 |
. . . . . . . . . . 11
 |
10 | | simplr 528 |
. . . . . . . . . . 11
   SubGrp      |
11 | 9, 10 | sselid 3168 |
. . . . . . . . . 10
   SubGrp      |
12 | 6, 7, 5, 11 | grpinvcld 13008 |
. . . . . . . . 9
   SubGrp               |
13 | 6 | subgss 13130 |
. . . . . . . . . . 11
 SubGrp 
  |
14 | 13 | adantr 276 |
. . . . . . . . . 10
  SubGrp     |
15 | 14 | sselda 3170 |
. . . . . . . . 9
   SubGrp      |
16 | | conjghm.p |
. . . . . . . . . 10
    |
17 | 6, 16 | grpass 12969 |
. . . . . . . . 9
                                    
     |
18 | 5, 12, 15, 11, 17 | syl13anc 1251 |
. . . . . . . 8
   SubGrp                          
     |
19 | | eqid 2189 |
. . . . . . . . . . . . 13
         |
20 | 6, 16, 19, 7, 5, 11 | grprinvd 13015 |
. . . . . . . . . . . 12
   SubGrp                     |
21 | 20 | oveq1d 5912 |
. . . . . . . . . . 11
   SubGrp                         |
22 | 6, 16 | grpass 12969 |
. . . . . . . . . . . 12
  
        
 
                       
    |
23 | 5, 11, 12, 15, 22 | syl13anc 1251 |
. . . . . . . . . . 11
   SubGrp                                |
24 | 6, 16, 19, 5, 15 | grplidd 12992 |
. . . . . . . . . . 11
   SubGrp        
   |
25 | 21, 23, 24 | 3eqtr3d 2230 |
. . . . . . . . . 10
   SubGrp                   |
26 | | simpr 110 |
. . . . . . . . . 10
   SubGrp      |
27 | 25, 26 | eqeltrd 2266 |
. . . . . . . . 9
   SubGrp                   |
28 | 6, 16, 5, 12, 15 | grpcld 12974 |
. . . . . . . . . 10
   SubGrp             
   |
29 | 8 | nmzbi 13165 |
. . . . . . . . . 10
             
                        
     |
30 | 10, 28, 29 | syl2anc 411 |
. . . . . . . . 9
   SubGrp               
 
          
     |
31 | 27, 30 | mpbid 147 |
. . . . . . . 8
   SubGrp                   |
32 | 18, 31 | eqeltrrd 2267 |
. . . . . . 7
   SubGrp             
     |
33 | 6, 16, 5, 15, 11 | grpcld 12974 |
. . . . . . . . . 10
   SubGrp    
   |
34 | 6, 16, 5, 12, 33 | grpcld 12974 |
. . . . . . . . 9
   SubGrp             
     |
35 | 6, 16, 5, 11, 34 | grpcld 12974 |
. . . . . . . 8
   SubGrp                     |
36 | | conjghm.m |
. . . . . . . . 9
     |
37 | 6, 36 | grpsubcl 13039 |
. . . . . . . 8
  
         
                
       |
38 | 5, 35, 11, 37 | syl3anc 1249 |
. . . . . . 7
   SubGrp               
       |
39 | 1, 3, 32, 38 | fvmptd3 5630 |
. . . . . 6
   SubGrp                
                       |
40 | 20 | oveq1d 5912 |
. . . . . . . 8
   SubGrp                
            |
41 | 6, 16 | grpass 12969 |
. . . . . . . . 9
  
         
                            
      |
42 | 5, 11, 12, 33, 41 | syl13anc 1251 |
. . . . . . . 8
   SubGrp                
                   |
43 | 6, 16, 19, 5, 33 | grplidd 12992 |
. . . . . . . 8
   SubGrp        
       |
44 | 40, 42, 43 | 3eqtr3d 2230 |
. . . . . . 7
   SubGrp                       |
45 | 44 | oveq1d 5912 |
. . . . . 6
   SubGrp               
           |
46 | 6, 16, 36 | grppncan 13050 |
. . . . . . 7
 
       |
47 | 5, 15, 11, 46 | syl3anc 1249 |
. . . . . 6
   SubGrp      
   |
48 | 39, 45, 47 | 3eqtrd 2226 |
. . . . 5
   SubGrp                
      |
49 | 5 | adantr 276 |
. . . . . . . . 9
    SubGrp 

    |
50 | 11 | adantr 276 |
. . . . . . . . . 10
    SubGrp 

    |
51 | 14 | adantr 276 |
. . . . . . . . . . 11
   SubGrp      |
52 | 51 | sselda 3170 |
. . . . . . . . . 10
    SubGrp 

    |
53 | 6, 16, 49, 50, 52 | grpcld 12974 |
. . . . . . . . 9
    SubGrp 

      |
54 | 6, 36 | grpsubcl 13039 |
. . . . . . . . 9
  
    
   |
55 | 49, 53, 50, 54 | syl3anc 1249 |
. . . . . . . 8
    SubGrp 

    
   |
56 | 55 | ralrimiva 2563 |
. . . . . . 7
   SubGrp    
      |
57 | 1 | fnmpt 5361 |
. . . . . . 7
 
  

  |
58 | 56, 57 | syl 14 |
. . . . . 6
   SubGrp      |
59 | | fnfvelrn 5669 |
. . . . . 6
            
                
     |
60 | 58, 32, 59 | syl2anc 411 |
. . . . 5
   SubGrp                
      |
61 | 48, 60 | eqeltrrd 2267 |
. . . 4
   SubGrp      |
62 | 61 | ex 115 |
. . 3
  SubGrp   
   |
63 | 62 | ssrdv 3176 |
. 2
  SubGrp     |
64 | 4 | ad2antrr 488 |
. . . . . 6
   SubGrp      |
65 | | simplr 528 |
. . . . . . 7
   SubGrp      |
66 | 9, 65 | sselid 3168 |
. . . . . 6
   SubGrp      |
67 | 14 | sselda 3170 |
. . . . . 6
   SubGrp      |
68 | 6, 16, 36 | grpaddsubass 13049 |
. . . . . 6
  
    
  
    |
69 | 64, 66, 67, 66, 68 | syl13anc 1251 |
. . . . 5
   SubGrp      
  
    |
70 | 6, 16, 36 | grpnpcan 13051 |
. . . . . . . 8
 
       |
71 | 64, 67, 66, 70 | syl3anc 1249 |
. . . . . . 7
   SubGrp      
   |
72 | | simpr 110 |
. . . . . . 7
   SubGrp      |
73 | 71, 72 | eqeltrd 2266 |
. . . . . 6
   SubGrp      
   |
74 | 6, 36 | grpsubcl 13039 |
. . . . . . . 8
 
     |
75 | 64, 67, 66, 74 | syl3anc 1249 |
. . . . . . 7
   SubGrp    
   |
76 | 8 | nmzbi 13165 |
. . . . . . 7
  
    
 
 
     |
77 | 65, 75, 76 | syl2anc 411 |
. . . . . 6
   SubGrp      
 
 
     |
78 | 73, 77 | mpbird 167 |
. . . . 5
   SubGrp          |
79 | 69, 78 | eqeltrd 2266 |
. . . 4
   SubGrp      
   |
80 | 79, 1 | fmptd 5691 |
. . 3
  SubGrp         |
81 | 80 | frnd 5394 |
. 2
  SubGrp     |
82 | 63, 81 | eqssd 3187 |
1
  SubGrp     |