ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmz Unicode version

Theorem conjnmz 13615
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmz  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjsubg.f . . . . . . 7  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
2 oveq2 5952 . . . . . . . 8  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  ( A  .+  x )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
32oveq1d 5959 . . . . . . 7  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4 subgrcl 13515 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54ad2antrr 488 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  G  e.  Grp )
6 conjghm.x . . . . . . . . . 10  |-  X  =  ( Base `  G
)
7 eqid 2205 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
8 conjnmz.1 . . . . . . . . . . . 12  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
98ssrab3 3279 . . . . . . . . . . 11  |-  N  C_  X
10 simplr 528 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  N )
119, 10sselid 3191 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  X )
126, 7, 5, 11grpinvcld 13381 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( invg `  G ) `  A
)  e.  X )
136subgss 13510 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1413adantr 276 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_  X )
1514sselda 3193 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  X )
16 conjghm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
176, 16grpass 13341 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  w  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
185, 12, 15, 11, 17syl13anc 1252 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
19 eqid 2205 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
206, 16, 19, 7, 5, 11grprinvd 13388 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( invg `  G ) `
 A ) )  =  ( 0g `  G ) )
2120oveq1d 5959 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( ( 0g `  G ) 
.+  w ) )
226, 16grpass 13341 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  w  e.  X )
)  ->  ( ( A  .+  ( ( invg `  G ) `
 A ) ) 
.+  w )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
) )
235, 11, 12, 15, 22syl13anc 1252 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  w ) ) )
246, 16, 19, 5, 15grplidd 13365 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  w )  =  w )
2521, 23, 243eqtr3d 2246 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  =  w )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  S )
2725, 26eqeltrd 2282 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S )
286, 16, 5, 12, 15grpcld 13346 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  w )  e.  X )
298nmzbi 13545 . . . . . . . . . 10  |-  ( ( A  e.  N  /\  ( ( ( invg `  G ) `
 A )  .+  w )  e.  X
)  ->  ( ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S  <->  ( ( ( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3010, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
)  e.  S  <->  ( (
( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3127, 30mpbid 147 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  e.  S )
3218, 31eqeltrrd 2283 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  S )
336, 16, 5, 15, 11grpcld 13346 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
w  .+  A )  e.  X )
346, 16, 5, 12, 33grpcld 13346 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  X )
356, 16, 5, 11, 34grpcld 13346 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  e.  X )
36 conjghm.m . . . . . . . . 9  |-  .-  =  ( -g `  G )
376, 36grpsubcl 13412 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  .+  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  X  /\  A  e.  X )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
385, 35, 11, 37syl3anc 1250 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
391, 3, 32, 38fvmptd3 5673 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4020oveq1d 5959 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( ( 0g `  G ) 
.+  ( w  .+  A ) ) )
416, 16grpass 13341 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  ( w  .+  A )  e.  X ) )  ->  ( ( A 
.+  ( ( invg `  G ) `
 A ) ) 
.+  ( w  .+  A ) )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
425, 11, 12, 33, 41syl13anc 1252 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) ) )
436, 16, 19, 5, 33grplidd 13365 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  ( w  .+  A ) )  =  ( w  .+  A
) )
4440, 42, 433eqtr3d 2246 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  =  ( w  .+  A
) )
4544oveq1d 5959 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  =  ( ( w  .+  A )  .-  A
) )
466, 16, 36grppncan 13423 . . . . . . 7  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  A  e.  X )  ->  ( ( w  .+  A )  .-  A
)  =  w )
475, 15, 11, 46syl3anc 1250 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( w  .+  A
)  .-  A )  =  w )
4839, 45, 473eqtrd 2242 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  w )
495adantr 276 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  G  e.  Grp )
5011adantr 276 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  A  e.  X )
5114adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  S  C_  X )
5251sselda 3193 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  x  e.  X )
536, 16, 49, 50, 52grpcld 13346 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  ( A  .+  x )  e.  X )
546, 36grpsubcl 13412 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  .+  x )  e.  X  /\  A  e.  X )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5549, 53, 50, 54syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5655ralrimiva 2579 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A. x  e.  S  ( ( A  .+  x )  .-  A )  e.  X
)
571fnmpt 5402 . . . . . . 7  |-  ( A. x  e.  S  (
( A  .+  x
)  .-  A )  e.  X  ->  F  Fn  S )
5856, 57syl 14 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  F  Fn  S )
59 fnfvelrn 5712 . . . . . 6  |-  ( ( F  Fn  S  /\  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) )  e.  S )  ->  ( F `  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) ) )  e.  ran  F )
6058, 32, 59syl2anc 411 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  ran  F )
6148, 60eqeltrrd 2283 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  ran  F )
6261ex 115 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  (
w  e.  S  ->  w  e.  ran  F ) )
6362ssrdv 3199 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_ 
ran  F )
644ad2antrr 488 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  G  e.  Grp )
65 simplr 528 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  N )
669, 65sselid 3191 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  X )
6714sselda 3193 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  X )
686, 16, 36grpaddsubass 13422 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
6964, 66, 67, 66, 68syl13anc 1252 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
706, 16, 36grpnpcan 13424 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( ( x  .-  A )  .+  A
)  =  x )
7164, 67, 66, 70syl3anc 1250 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  =  x )
72 simpr 110 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  S )
7371, 72eqeltrd 2282 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  e.  S )
746, 36grpsubcl 13412 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
7564, 67, 66, 74syl3anc 1250 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
768nmzbi 13545 . . . . . . 7  |-  ( ( A  e.  N  /\  ( x  .-  A )  e.  X )  -> 
( ( A  .+  ( x  .-  A ) )  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7765, 75, 76syl2anc 411 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7873, 77mpbird 167 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  ( A  .+  ( x  .-  A ) )  e.  S )
7969, 78eqeltrd 2282 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  S )
8079, 1fmptd 5734 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  F : S --> S )
8180frnd 5435 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ran  F 
C_  S )
8263, 81eqssd 3210 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488    C_ wss 3166    |-> cmpt 4105   ran crn 4676    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506
This theorem is referenced by:  conjnmzb  13616  conjnsg  13617
  Copyright terms: Public domain W3C validator