ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmz Unicode version

Theorem conjnmz 13409
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmz  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjsubg.f . . . . . . 7  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
2 oveq2 5930 . . . . . . . 8  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  ( A  .+  x )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
32oveq1d 5937 . . . . . . 7  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4 subgrcl 13309 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54ad2antrr 488 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  G  e.  Grp )
6 conjghm.x . . . . . . . . . 10  |-  X  =  ( Base `  G
)
7 eqid 2196 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
8 conjnmz.1 . . . . . . . . . . . 12  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
98ssrab3 3269 . . . . . . . . . . 11  |-  N  C_  X
10 simplr 528 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  N )
119, 10sselid 3181 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  X )
126, 7, 5, 11grpinvcld 13181 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( invg `  G ) `  A
)  e.  X )
136subgss 13304 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1413adantr 276 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_  X )
1514sselda 3183 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  X )
16 conjghm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
176, 16grpass 13141 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  w  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
185, 12, 15, 11, 17syl13anc 1251 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
19 eqid 2196 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
206, 16, 19, 7, 5, 11grprinvd 13188 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( invg `  G ) `
 A ) )  =  ( 0g `  G ) )
2120oveq1d 5937 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( ( 0g `  G ) 
.+  w ) )
226, 16grpass 13141 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  w  e.  X )
)  ->  ( ( A  .+  ( ( invg `  G ) `
 A ) ) 
.+  w )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
) )
235, 11, 12, 15, 22syl13anc 1251 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  w ) ) )
246, 16, 19, 5, 15grplidd 13165 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  w )  =  w )
2521, 23, 243eqtr3d 2237 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  =  w )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  S )
2725, 26eqeltrd 2273 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S )
286, 16, 5, 12, 15grpcld 13146 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  w )  e.  X )
298nmzbi 13339 . . . . . . . . . 10  |-  ( ( A  e.  N  /\  ( ( ( invg `  G ) `
 A )  .+  w )  e.  X
)  ->  ( ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S  <->  ( ( ( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3010, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
)  e.  S  <->  ( (
( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3127, 30mpbid 147 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  e.  S )
3218, 31eqeltrrd 2274 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  S )
336, 16, 5, 15, 11grpcld 13146 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
w  .+  A )  e.  X )
346, 16, 5, 12, 33grpcld 13146 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  X )
356, 16, 5, 11, 34grpcld 13146 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  e.  X )
36 conjghm.m . . . . . . . . 9  |-  .-  =  ( -g `  G )
376, 36grpsubcl 13212 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  .+  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  X  /\  A  e.  X )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
385, 35, 11, 37syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
391, 3, 32, 38fvmptd3 5655 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4020oveq1d 5937 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( ( 0g `  G ) 
.+  ( w  .+  A ) ) )
416, 16grpass 13141 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  ( w  .+  A )  e.  X ) )  ->  ( ( A 
.+  ( ( invg `  G ) `
 A ) ) 
.+  ( w  .+  A ) )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
425, 11, 12, 33, 41syl13anc 1251 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) ) )
436, 16, 19, 5, 33grplidd 13165 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  ( w  .+  A ) )  =  ( w  .+  A
) )
4440, 42, 433eqtr3d 2237 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  =  ( w  .+  A
) )
4544oveq1d 5937 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  =  ( ( w  .+  A )  .-  A
) )
466, 16, 36grppncan 13223 . . . . . . 7  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  A  e.  X )  ->  ( ( w  .+  A )  .-  A
)  =  w )
475, 15, 11, 46syl3anc 1249 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( w  .+  A
)  .-  A )  =  w )
4839, 45, 473eqtrd 2233 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  w )
495adantr 276 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  G  e.  Grp )
5011adantr 276 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  A  e.  X )
5114adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  S  C_  X )
5251sselda 3183 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  x  e.  X )
536, 16, 49, 50, 52grpcld 13146 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  ( A  .+  x )  e.  X )
546, 36grpsubcl 13212 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  .+  x )  e.  X  /\  A  e.  X )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5549, 53, 50, 54syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5655ralrimiva 2570 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A. x  e.  S  ( ( A  .+  x )  .-  A )  e.  X
)
571fnmpt 5384 . . . . . . 7  |-  ( A. x  e.  S  (
( A  .+  x
)  .-  A )  e.  X  ->  F  Fn  S )
5856, 57syl 14 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  F  Fn  S )
59 fnfvelrn 5694 . . . . . 6  |-  ( ( F  Fn  S  /\  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) )  e.  S )  ->  ( F `  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) ) )  e.  ran  F )
6058, 32, 59syl2anc 411 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  ran  F )
6148, 60eqeltrrd 2274 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  ran  F )
6261ex 115 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  (
w  e.  S  ->  w  e.  ran  F ) )
6362ssrdv 3189 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_ 
ran  F )
644ad2antrr 488 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  G  e.  Grp )
65 simplr 528 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  N )
669, 65sselid 3181 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  X )
6714sselda 3183 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  X )
686, 16, 36grpaddsubass 13222 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
6964, 66, 67, 66, 68syl13anc 1251 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
706, 16, 36grpnpcan 13224 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( ( x  .-  A )  .+  A
)  =  x )
7164, 67, 66, 70syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  =  x )
72 simpr 110 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  S )
7371, 72eqeltrd 2273 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  e.  S )
746, 36grpsubcl 13212 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
7564, 67, 66, 74syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
768nmzbi 13339 . . . . . . 7  |-  ( ( A  e.  N  /\  ( x  .-  A )  e.  X )  -> 
( ( A  .+  ( x  .-  A ) )  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7765, 75, 76syl2anc 411 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7873, 77mpbird 167 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  ( A  .+  ( x  .-  A ) )  e.  S )
7969, 78eqeltrd 2273 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  S )
8079, 1fmptd 5716 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  F : S --> S )
8180frnd 5417 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ran  F 
C_  S )
8263, 81eqssd 3200 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    C_ wss 3157    |-> cmpt 4094   ran crn 4664    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300
This theorem is referenced by:  conjnmzb  13410  conjnsg  13411
  Copyright terms: Public domain W3C validator