ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmz Unicode version

Theorem conjnmz 13235
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmz  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjsubg.f . . . . . . 7  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
2 oveq2 5905 . . . . . . . 8  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  ( A  .+  x )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
32oveq1d 5912 . . . . . . 7  |-  ( x  =  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) )  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4 subgrcl 13135 . . . . . . . . . 10  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54ad2antrr 488 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  G  e.  Grp )
6 conjghm.x . . . . . . . . . 10  |-  X  =  ( Base `  G
)
7 eqid 2189 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
8 conjnmz.1 . . . . . . . . . . . 12  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
98ssrab3 3256 . . . . . . . . . . 11  |-  N  C_  X
10 simplr 528 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  N )
119, 10sselid 3168 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A  e.  X )
126, 7, 5, 11grpinvcld 13008 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( invg `  G ) `  A
)  e.  X )
136subgss 13130 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1413adantr 276 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_  X )
1514sselda 3170 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  X )
16 conjghm.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
176, 16grpass 12969 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 A )  e.  X  /\  w  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( invg `  G
) `  A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
185, 12, 15, 11, 17syl13anc 1251 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  =  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )
19 eqid 2189 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
206, 16, 19, 7, 5, 11grprinvd 13015 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( invg `  G ) `
 A ) )  =  ( 0g `  G ) )
2120oveq1d 5912 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( ( 0g `  G ) 
.+  w ) )
226, 16grpass 12969 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  w  e.  X )
)  ->  ( ( A  .+  ( ( invg `  G ) `
 A ) ) 
.+  w )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
) )
235, 11, 12, 15, 22syl13anc 1251 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  w
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  w ) ) )
246, 16, 19, 5, 15grplidd 12992 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  w )  =  w )
2521, 23, 243eqtr3d 2230 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  =  w )
26 simpr 110 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  S )
2725, 26eqeltrd 2266 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S )
286, 16, 5, 12, 15grpcld 12974 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  w )  e.  X )
298nmzbi 13165 . . . . . . . . . 10  |-  ( ( A  e.  N  /\  ( ( ( invg `  G ) `
 A )  .+  w )  e.  X
)  ->  ( ( A  .+  ( ( ( invg `  G
) `  A )  .+  w ) )  e.  S  <->  ( ( ( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3010, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  w )
)  e.  S  <->  ( (
( ( invg `  G ) `  A
)  .+  w )  .+  A )  e.  S
) )
3127, 30mpbid 147 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( ( invg `  G ) `
 A )  .+  w )  .+  A
)  e.  S )
3218, 31eqeltrrd 2267 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  S )
336, 16, 5, 15, 11grpcld 12974 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
w  .+  A )  e.  X )
346, 16, 5, 12, 33grpcld 12974 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) )  e.  X )
356, 16, 5, 11, 34grpcld 12974 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  e.  X )
36 conjghm.m . . . . . . . . 9  |-  .-  =  ( -g `  G )
376, 36grpsubcl 13039 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  .+  ( ( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  X  /\  A  e.  X )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
385, 35, 11, 37syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  e.  X )
391, 3, 32, 38fvmptd3 5630 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  ( ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  .-  A ) )
4020oveq1d 5912 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( ( 0g `  G ) 
.+  ( w  .+  A ) ) )
416, 16grpass 12969 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  ( ( invg `  G ) `  A
)  e.  X  /\  ( w  .+  A )  e.  X ) )  ->  ( ( A 
.+  ( ( invg `  G ) `
 A ) ) 
.+  ( w  .+  A ) )  =  ( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) )
425, 11, 12, 33, 41syl13anc 1251 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( invg `  G ) `  A
) )  .+  (
w  .+  A )
)  =  ( A 
.+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) ) )
436, 16, 19, 5, 33grplidd 12992 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( 0g `  G
)  .+  ( w  .+  A ) )  =  ( w  .+  A
) )
4440, 42, 433eqtr3d 2230 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( A  .+  ( ( ( invg `  G
) `  A )  .+  ( w  .+  A
) ) )  =  ( w  .+  A
) )
4544oveq1d 5912 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( A  .+  (
( ( invg `  G ) `  A
)  .+  ( w  .+  A ) ) ) 
.-  A )  =  ( ( w  .+  A )  .-  A
) )
466, 16, 36grppncan 13050 . . . . . . 7  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  A  e.  X )  ->  ( ( w  .+  A )  .-  A
)  =  w )
475, 15, 11, 46syl3anc 1249 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  (
( w  .+  A
)  .-  A )  =  w )
4839, 45, 473eqtrd 2226 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  =  w )
495adantr 276 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  G  e.  Grp )
5011adantr 276 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  A  e.  X )
5114adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  S  C_  X )
5251sselda 3170 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  x  e.  X )
536, 16, 49, 50, 52grpcld 12974 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  ( A  .+  x )  e.  X )
546, 36grpsubcl 13039 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( A  .+  x )  e.  X  /\  A  e.  X )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5549, 53, 50, 54syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N
)  /\  w  e.  S )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  X )
5655ralrimiva 2563 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  A. x  e.  S  ( ( A  .+  x )  .-  A )  e.  X
)
571fnmpt 5361 . . . . . . 7  |-  ( A. x  e.  S  (
( A  .+  x
)  .-  A )  e.  X  ->  F  Fn  S )
5856, 57syl 14 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  F  Fn  S )
59 fnfvelrn 5669 . . . . . 6  |-  ( ( F  Fn  S  /\  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) )  e.  S )  ->  ( F `  ( ( ( invg `  G ) `
 A )  .+  ( w  .+  A ) ) )  e.  ran  F )
6058, 32, 59syl2anc 411 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  ( F `  ( (
( invg `  G ) `  A
)  .+  ( w  .+  A ) ) )  e.  ran  F )
6148, 60eqeltrrd 2267 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  w  e.  S )  ->  w  e.  ran  F )
6261ex 115 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  (
w  e.  S  ->  w  e.  ran  F ) )
6362ssrdv 3176 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  C_ 
ran  F )
644ad2antrr 488 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  G  e.  Grp )
65 simplr 528 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  N )
669, 65sselid 3168 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  A  e.  X )
6714sselda 3170 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  X )
686, 16, 36grpaddsubass 13049 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
6964, 66, 67, 66, 68syl13anc 1251 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
706, 16, 36grpnpcan 13051 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( ( x  .-  A )  .+  A
)  =  x )
7164, 67, 66, 70syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  =  x )
72 simpr 110 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  x  e.  S )
7371, 72eqeltrd 2266 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( x  .-  A
)  .+  A )  e.  S )
746, 36grpsubcl 13039 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
7564, 67, 66, 74syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
768nmzbi 13165 . . . . . . 7  |-  ( ( A  e.  N  /\  ( x  .-  A )  e.  X )  -> 
( ( A  .+  ( x  .-  A ) )  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7765, 75, 76syl2anc 411 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  e.  S  <->  ( (
x  .-  A )  .+  A )  e.  S
) )
7873, 77mpbird 167 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  ( A  .+  ( x  .-  A ) )  e.  S )
7969, 78eqeltrd 2266 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  e.  S )
8079, 1fmptd 5691 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  F : S --> S )
8180frnd 5394 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ran  F 
C_  S )
8263, 81eqssd 3187 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   {crab 2472    C_ wss 3144    |-> cmpt 4079   ran crn 4645    Fn wfn 5230   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Grpcgrp 12960   invgcminusg 12961   -gcsg 12962  SubGrpcsubg 13123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-subg 13126
This theorem is referenced by:  conjnmzb  13236  conjnsg  13237
  Copyright terms: Public domain W3C validator