ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei GIF version

Theorem nnrei 9119
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 9117 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2200  cr 7998  cn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-int 3924  df-inn 9111
This theorem is referenced by:  nncni  9120  nnap0i  9141  nnne0i  9142  10re  9596  numlt  9602  numltc  9603  ef01bndlem  12267  pockthi  12881  strleun  13137  strle1g  13139  2strbasg  13153  2stropg  13154  tsetndxnbasendx  13224  plendxnbasendx  13238  dsndxnbasendx  13253  unifndxnbasendx  13263  slotsdifunifndx  13265  basendxnedgfndx  15812  struct2slots2dom  15839
  Copyright terms: Public domain W3C validator