ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei GIF version

Theorem nnrei 9044
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 9042 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2175  cr 7923  cn 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-int 3885  df-inn 9036
This theorem is referenced by:  nncni  9045  nnap0i  9066  nnne0i  9067  10re  9521  numlt  9527  numltc  9528  ef01bndlem  12038  pockthi  12652  strleun  12907  strle1g  12909  2strbasg  12923  2stropg  12924  tsetndxnbasendx  12994  plendxnbasendx  13008  dsndxnbasendx  13023  unifndxnbasendx  13033  slotsdifunifndx  13035  basendxnedgfndx  15581  struct2slots2dom  15606
  Copyright terms: Public domain W3C validator