ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrei GIF version

Theorem nnrei 9018
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1 𝐴 ∈ ℕ
Assertion
Ref Expression
nnrei 𝐴 ∈ ℝ

Proof of Theorem nnrei
StepHypRef Expression
1 nnre.1 . 2 𝐴 ∈ ℕ
2 nnre 9016 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
31, 2ax-mp 5 1 𝐴 ∈ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cr 7897  cn 9009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-int 3876  df-inn 9010
This theorem is referenced by:  nncni  9019  nnap0i  9040  nnne0i  9041  10re  9494  numlt  9500  numltc  9501  ef01bndlem  11940  pockthi  12554  strleun  12809  strle1g  12811  2strbasg  12824  2stropg  12825  tsetndxnbasendx  12895  plendxnbasendx  12909  dsndxnbasendx  12924  unifndxnbasendx  12934  slotsdifunifndx  12936
  Copyright terms: Public domain W3C validator