| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnrei | GIF version | ||
| Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnre.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| nnrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
| 2 | nnre 9042 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℝcr 7923 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-int 3885 df-inn 9036 |
| This theorem is referenced by: nncni 9045 nnap0i 9066 nnne0i 9067 10re 9521 numlt 9527 numltc 9528 ef01bndlem 12038 pockthi 12652 strleun 12907 strle1g 12909 2strbasg 12923 2stropg 12924 tsetndxnbasendx 12994 plendxnbasendx 13008 dsndxnbasendx 13023 unifndxnbasendx 13033 slotsdifunifndx 13035 basendxnedgfndx 15581 struct2slots2dom 15606 |
| Copyright terms: Public domain | W3C validator |