ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsuc Unicode version

Theorem nnsuc 4652
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
Distinct variable group:    x, A

Proof of Theorem nnsuc
StepHypRef Expression
1 df-ne 2368 . 2  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
2 nn0suc 4640 . . . 4  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
32ord 725 . . 3  |-  ( A  e.  om  ->  ( -.  A  =  (/)  ->  E. x  e.  om  A  =  suc  x ) )
43imp 124 . 2  |-  ( ( A  e.  om  /\  -.  A  =  (/) )  ->  E. x  e.  om  A  =  suc  x )
51, 4sylan2b 287 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476   (/)c0 3450   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnsucpred  4653
  Copyright terms: Public domain W3C validator