ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsuc GIF version

Theorem nnsuc 4616
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnsuc
StepHypRef Expression
1 df-ne 2348 . 2 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 nn0suc 4604 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
32ord 724 . . 3 (𝐴 ∈ ω → (¬ 𝐴 = ∅ → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
43imp 124 . 2 ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
51, 4sylan2b 287 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347  wrex 2456  c0 3423  suc csuc 4366  ωcom 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-suc 4372  df-iom 4591
This theorem is referenced by:  nnsucpred  4617
  Copyright terms: Public domain W3C validator