ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndval2 Unicode version

Theorem 2ndval2 6209
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^|
|^| `' { A } )

Proof of Theorem 2ndval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4721 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2763 . . . . . 6  |-  x  e. 
_V
3 vex 2763 . . . . . 6  |-  y  e. 
_V
42, 3op2nd 6200 . . . . 5  |-  ( 2nd `  <. x ,  y
>. )  =  y
52, 3op2ndb 5149 . . . . 5  |-  |^| |^| |^| `' { <. x ,  y
>. }  =  y
64, 5eqtr4i 2217 . . . 4  |-  ( 2nd `  <. x ,  y
>. )  =  |^| |^|
|^| `' { <. x ,  y
>. }
7 fveq2 5554 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  ( 2nd `  <. x ,  y
>. ) )
8 sneq 3629 . . . . . . . 8  |-  ( A  =  <. x ,  y
>.  ->  { A }  =  { <. x ,  y
>. } )
98cnveqd 4838 . . . . . . 7  |-  ( A  =  <. x ,  y
>.  ->  `' { A }  =  `' { <. x ,  y >. } )
109inteqd 3875 . . . . . 6  |-  ( A  =  <. x ,  y
>.  ->  |^| `' { A }  =  |^| `' { <. x ,  y >. } )
1110inteqd 3875 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| `' { A }  =  |^| |^| `' { <. x ,  y
>. } )
1211inteqd 3875 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| |^| `' { A }  =  |^| |^| |^| `' { <. x ,  y
>. } )
136, 7, 123eqtr4a 2252 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  |^| |^| |^| `' { A } )
1413exlimivv 1908 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  |^| |^| |^| `' { A } )
151, 14sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^|
|^| `' { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   |^|cint 3870    X. cxp 4657   `'ccnv 4658   ` cfv 5254   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator