ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndval2 Unicode version

Theorem 2ndval2 6214
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^|
|^| `' { A } )

Proof of Theorem 2ndval2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4725 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2766 . . . . . 6  |-  x  e. 
_V
3 vex 2766 . . . . . 6  |-  y  e. 
_V
42, 3op2nd 6205 . . . . 5  |-  ( 2nd `  <. x ,  y
>. )  =  y
52, 3op2ndb 5153 . . . . 5  |-  |^| |^| |^| `' { <. x ,  y
>. }  =  y
64, 5eqtr4i 2220 . . . 4  |-  ( 2nd `  <. x ,  y
>. )  =  |^| |^|
|^| `' { <. x ,  y
>. }
7 fveq2 5558 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  ( 2nd `  <. x ,  y
>. ) )
8 sneq 3633 . . . . . . . 8  |-  ( A  =  <. x ,  y
>.  ->  { A }  =  { <. x ,  y
>. } )
98cnveqd 4842 . . . . . . 7  |-  ( A  =  <. x ,  y
>.  ->  `' { A }  =  `' { <. x ,  y >. } )
109inteqd 3879 . . . . . 6  |-  ( A  =  <. x ,  y
>.  ->  |^| `' { A }  =  |^| `' { <. x ,  y >. } )
1110inteqd 3879 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| `' { A }  =  |^| |^| `' { <. x ,  y
>. } )
1211inteqd 3879 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  |^| |^| |^| `' { A }  =  |^| |^| |^| `' { <. x ,  y
>. } )
136, 7, 123eqtr4a 2255 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  |^| |^| |^| `' { A } )
1413exlimivv 1911 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  |^| |^| |^| `' { A } )
151, 14sylbi 121 1  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^|
|^| `' { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625   |^|cint 3874    X. cxp 4661   `'ccnv 4662   ` cfv 5258   2ndc2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-2nd 6199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator