Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndval2 | Unicode version |
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
2ndval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4682 | . 2 | |
2 | vex 2738 | . . . . . 6 | |
3 | vex 2738 | . . . . . 6 | |
4 | 2, 3 | op2nd 6138 | . . . . 5 |
5 | 2, 3 | op2ndb 5104 | . . . . 5 |
6 | 4, 5 | eqtr4i 2199 | . . . 4 |
7 | fveq2 5507 | . . . 4 | |
8 | sneq 3600 | . . . . . . . 8 | |
9 | 8 | cnveqd 4796 | . . . . . . 7 |
10 | 9 | inteqd 3845 | . . . . . 6 |
11 | 10 | inteqd 3845 | . . . . 5 |
12 | 11 | inteqd 3845 | . . . 4 |
13 | 6, 7, 12 | 3eqtr4a 2234 | . . 3 |
14 | 13 | exlimivv 1894 | . 2 |
15 | 1, 14 | sylbi 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wex 1490 wcel 2146 cvv 2735 csn 3589 cop 3592 cint 3840 cxp 4618 ccnv 4619 cfv 5208 c2nd 6130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fv 5216 df-2nd 6132 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |