ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda Unicode version

Theorem op2nda 5213
Description: Extract the second member of an ordered pair. (See op1sta 5210 to extract the first member and op2ndb 5212 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2nda  |-  U. ran  {
<. A ,  B >. }  =  B

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4  |-  A  e. 
_V
21rnsnop 5209 . . 3  |-  ran  { <. A ,  B >. }  =  { B }
32unieqi 3898 . 2  |-  U. ran  {
<. A ,  B >. }  =  U. { B }
4 cnvsn.2 . . 3  |-  B  e. 
_V
54unisn 3904 . 2  |-  U. { B }  =  B
63, 5eqtri 2250 1  |-  U. ran  {
<. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   U.cuni 3888   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  elxp4  5216  elxp5  5217  op2nd  6293  fo2nd  6304  f2ndres  6306  ixpsnf1o  6883  xpassen  6989  xpdom2  6990
  Copyright terms: Public domain W3C validator