ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nda Unicode version

Theorem op2nda 5151
Description: Extract the second member of an ordered pair. (See op1sta 5148 to extract the first member and op2ndb 5150 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2nda  |-  U. ran  {
<. A ,  B >. }  =  B

Proof of Theorem op2nda
StepHypRef Expression
1 cnvsn.1 . . . 4  |-  A  e. 
_V
21rnsnop 5147 . . 3  |-  ran  { <. A ,  B >. }  =  { B }
32unieqi 3846 . 2  |-  U. ran  {
<. A ,  B >. }  =  U. { B }
4 cnvsn.2 . . 3  |-  B  e. 
_V
54unisn 3852 . 2  |-  U. { B }  =  B
63, 5eqtri 2214 1  |-  U. ran  {
<. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   <.cop 3622   U.cuni 3836   ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  elxp4  5154  elxp5  5155  op2nd  6202  fo2nd  6213  f2ndres  6215  ixpsnf1o  6792  xpassen  6886  xpdom2  6887
  Copyright terms: Public domain W3C validator