ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab2a GIF version

Theorem opelopab2a 4259
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopab2a ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2238 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 eleq1 2238 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
31, 2bi2anan9 606 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝐶𝐵𝐷)))
4 opelopabga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
53, 4anbi12d 473 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷) ∧ 𝜑) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
65opelopabga 4257 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
76bianabs 611 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  cop 3592  {copab 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060
This theorem is referenced by:  opelopab2  4264  brab2a  4673  brab2ga  4695  ltdfpr  7480
  Copyright terms: Public domain W3C validator