ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopab2a GIF version

Theorem opelopab2a 4068
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopab2a ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2147 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 eleq1 2147 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
31, 2bi2anan9 571 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝐶𝐵𝐷)))
4 opelopabga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
53, 4anbi12d 457 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷) ∧ 𝜑) ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
65opelopabga 4066 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓)))
76bianabs 576 1 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  cop 3434  {copab 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-opab 3877
This theorem is referenced by:  opelopab2  4073  brab2a  4461  brab2ga  4483  ltdfpr  7012
  Copyright terms: Public domain W3C validator