ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabga Unicode version

Theorem brabga 4124
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brabga.2  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabga  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)    V( x, y)    W( x, y)

Proof of Theorem brabga
StepHypRef Expression
1 df-br 3876 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 brabga.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ph }
32eleq2i 2166 . . 3  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
41, 3bitri 183 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
5 opelopabga.1 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
65opelopabga 4123 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ps ) )
74, 6syl5bb 191 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   <.cop 3477   class class class wbr 3875   {copab 3928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930
This theorem is referenced by:  braba  4127  brabg  4129  epelg  4150  brcog  4644  fmptco  5518  ofrfval  5922  clim  10889  isstruct2im  11751  isstruct2r  11752
  Copyright terms: Public domain W3C validator