ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabsbALT Unicode version

Theorem opelopabsbALT 4274
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 4275, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
Distinct variable groups:    x, y, z   
x, w, y
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 1675 . . 3  |-  ( E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) )
2 vex 2755 . . . . . . 7  |-  z  e. 
_V
3 vex 2755 . . . . . . 7  |-  w  e. 
_V
42, 3opth 4252 . . . . . 6  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  <->  ( z  =  x  /\  w  =  y )
)
5 equcom 1717 . . . . . . 7  |-  ( z  =  x  <->  x  =  z )
6 equcom 1717 . . . . . . 7  |-  ( w  =  y  <->  y  =  w )
75, 6anbi12ci 461 . . . . . 6  |-  ( ( z  =  x  /\  w  =  y )  <->  ( y  =  w  /\  x  =  z )
)
84, 7bitri 184 . . . . 5  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  <->  ( y  =  w  /\  x  =  z )
)
98anbi1i 458 . . . 4  |-  ( (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  ( (
y  =  w  /\  x  =  z )  /\  ph ) )
1092exbii 1617 . . 3  |-  ( E. y E. x (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( ( y  =  w  /\  x  =  z )  /\  ph ) )
111, 10bitri 184 . 2  |-  ( E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( ( y  =  w  /\  x  =  z )  /\  ph ) )
12 elopab 4273 . 2  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) )
13 2sb5 1995 . 2  |-  ( [ w  /  y ] [ z  /  x ] ph  <->  E. y E. x
( ( y  =  w  /\  x  =  z )  /\  ph ) )
1411, 12, 133bitr4i 212 1  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503   [wsb 1773    e. wcel 2160   <.cop 3610   {copab 4078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080
This theorem is referenced by:  inopab  4774  cnvopab  5045
  Copyright terms: Public domain W3C validator