ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabsbALT Unicode version

Theorem opelopabsbALT 4323
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 4324, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
Distinct variable groups:    x, y, z   
x, w, y
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 1688 . . 3  |-  ( E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) )
2 vex 2779 . . . . . . 7  |-  z  e. 
_V
3 vex 2779 . . . . . . 7  |-  w  e. 
_V
42, 3opth 4299 . . . . . 6  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  <->  ( z  =  x  /\  w  =  y )
)
5 equcom 1730 . . . . . . 7  |-  ( z  =  x  <->  x  =  z )
6 equcom 1730 . . . . . . 7  |-  ( w  =  y  <->  y  =  w )
75, 6anbi12ci 461 . . . . . 6  |-  ( ( z  =  x  /\  w  =  y )  <->  ( y  =  w  /\  x  =  z )
)
84, 7bitri 184 . . . . 5  |-  ( <.
z ,  w >.  = 
<. x ,  y >.  <->  ( y  =  w  /\  x  =  z )
)
98anbi1i 458 . . . 4  |-  ( (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  ( (
y  =  w  /\  x  =  z )  /\  ph ) )
1092exbii 1630 . . 3  |-  ( E. y E. x (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( ( y  =  w  /\  x  =  z )  /\  ph ) )
111, 10bitri 184 . 2  |-  ( E. x E. y (
<. z ,  w >.  = 
<. x ,  y >.  /\  ph )  <->  E. y E. x ( ( y  =  w  /\  x  =  z )  /\  ph ) )
12 elopab 4322 . 2  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. z ,  w >.  =  <. x ,  y >.  /\  ph ) )
13 2sb5 2012 . 2  |-  ( [ w  /  y ] [ z  /  x ] ph  <->  E. y E. x
( ( y  =  w  /\  x  =  z )  /\  ph ) )
1411, 12, 133bitr4i 212 1  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516   [wsb 1786    e. wcel 2178   <.cop 3646   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122
This theorem is referenced by:  inopab  4828  cnvopab  5103
  Copyright terms: Public domain W3C validator