Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inopab | Unicode version |
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
inopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4747 | . . 3 | |
2 | relin1 4738 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | relopab 4747 | . 2 | |
5 | sban 1953 | . . . 4 | |
6 | sban 1953 | . . . . 5 | |
7 | 6 | sbbii 1763 | . . . 4 |
8 | opelopabsbALT 4253 | . . . . 5 | |
9 | opelopabsbALT 4253 | . . . . 5 | |
10 | 8, 9 | anbi12i 460 | . . . 4 |
11 | 5, 7, 10 | 3bitr4ri 213 | . . 3 |
12 | elin 3316 | . . 3 | |
13 | opelopabsbALT 4253 | . . 3 | |
14 | 11, 12, 13 | 3bitr4i 212 | . 2 |
15 | 3, 4, 14 | eqrelriiv 4714 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wsb 1760 wcel 2146 cin 3126 cop 3592 copab 4058 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 df-rel 4627 |
This theorem is referenced by: inxp 4754 resopab 4944 cnvin 5028 fndmin 5615 enq0enq 7405 |
Copyright terms: Public domain | W3C validator |