ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopab Unicode version

Theorem inopab 4583
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem inopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4579 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 relin1 4570 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 7 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  i^i  {
<. x ,  y >.  |  ps } )
4 relopab 4579 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  ps ) }
5 sban 1878 . . . 4  |-  ( [ w  /  y ] ( [ z  /  x ] ph  /\  [
z  /  x ] ps )  <->  ( [ w  /  y ] [
z  /  x ] ph  /\  [ w  / 
y ] [ z  /  x ] ps ) )
6 sban 1878 . . . . 5  |-  ( [ z  /  x ]
( ph  /\  ps )  <->  ( [ z  /  x ] ph  /\  [ z  /  x ] ps ) )
76sbbii 1696 . . . 4  |-  ( [ w  /  y ] [ z  /  x ] ( ph  /\  ps )  <->  [ w  /  y ] ( [ z  /  x ] ph  /\ 
[ z  /  x ] ps ) )
8 opelopabsbALT 4097 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
9 opelopabsbALT 4097 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [ w  /  y ] [
z  /  x ] ps )
108, 9anbi12i 449 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <-> 
( [ w  / 
y ] [ z  /  x ] ph  /\ 
[ w  /  y ] [ z  /  x ] ps ) )
115, 7, 103bitr4ri 212 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <->  [ w  /  y ] [ z  /  x ] ( ph  /\  ps ) )
12 elin 3186 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } ) )
13 opelopabsbALT 4097 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
ps ) }  <->  [ w  /  y ] [
z  /  x ]
( ph  /\  ps )
)
1411, 12, 133bitr4i 211 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  ps ) } )
153, 4, 14eqrelriiv 4547 1  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290    e. wcel 1439   [wsb 1693    i^i cin 3001   <.cop 3455   {copab 3906   Rel wrel 4459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-opab 3908  df-xp 4460  df-rel 4461
This theorem is referenced by:  inxp  4585  resopab  4771  cnvin  4854  fndmin  5422  enq0enq  7053
  Copyright terms: Public domain W3C validator