| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inopab | Unicode version | ||
| Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| inopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4793 |
. . 3
| |
| 2 | relin1 4782 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | relopab 4793 |
. 2
| |
| 5 | sban 1974 |
. . . 4
| |
| 6 | sban 1974 |
. . . . 5
| |
| 7 | 6 | sbbii 1779 |
. . . 4
|
| 8 | opelopabsbALT 4294 |
. . . . 5
| |
| 9 | opelopabsbALT 4294 |
. . . . 5
| |
| 10 | 8, 9 | anbi12i 460 |
. . . 4
|
| 11 | 5, 7, 10 | 3bitr4ri 213 |
. . 3
|
| 12 | elin 3347 |
. . 3
| |
| 13 | opelopabsbALT 4294 |
. . 3
| |
| 14 | 11, 12, 13 | 3bitr4i 212 |
. 2
|
| 15 | 3, 4, 14 | eqrelriiv 4758 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: inxp 4801 resopab 4991 cnvin 5078 fndmin 5672 enq0enq 7515 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |