Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inopab | Unicode version |
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
inopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4738 | . . 3 | |
2 | relin1 4729 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | relopab 4738 | . 2 | |
5 | sban 1948 | . . . 4 | |
6 | sban 1948 | . . . . 5 | |
7 | 6 | sbbii 1758 | . . . 4 |
8 | opelopabsbALT 4244 | . . . . 5 | |
9 | opelopabsbALT 4244 | . . . . 5 | |
10 | 8, 9 | anbi12i 457 | . . . 4 |
11 | 5, 7, 10 | 3bitr4ri 212 | . . 3 |
12 | elin 3310 | . . 3 | |
13 | opelopabsbALT 4244 | . . 3 | |
14 | 11, 12, 13 | 3bitr4i 211 | . 2 |
15 | 3, 4, 14 | eqrelriiv 4705 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wsb 1755 wcel 2141 cin 3120 cop 3586 copab 4049 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 |
This theorem is referenced by: inxp 4745 resopab 4935 cnvin 5018 fndmin 5603 enq0enq 7393 |
Copyright terms: Public domain | W3C validator |