ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopab Unicode version

Theorem inopab 4761
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem inopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4755 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 relin1 4746 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 5 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  i^i  {
<. x ,  y >.  |  ps } )
4 relopab 4755 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  ps ) }
5 sban 1955 . . . 4  |-  ( [ w  /  y ] ( [ z  /  x ] ph  /\  [
z  /  x ] ps )  <->  ( [ w  /  y ] [
z  /  x ] ph  /\  [ w  / 
y ] [ z  /  x ] ps ) )
6 sban 1955 . . . . 5  |-  ( [ z  /  x ]
( ph  /\  ps )  <->  ( [ z  /  x ] ph  /\  [ z  /  x ] ps ) )
76sbbii 1765 . . . 4  |-  ( [ w  /  y ] [ z  /  x ] ( ph  /\  ps )  <->  [ w  /  y ] ( [ z  /  x ] ph  /\ 
[ z  /  x ] ps ) )
8 opelopabsbALT 4261 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
9 opelopabsbALT 4261 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [ w  /  y ] [
z  /  x ] ps )
108, 9anbi12i 460 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <-> 
( [ w  / 
y ] [ z  /  x ] ph  /\ 
[ w  /  y ] [ z  /  x ] ps ) )
115, 7, 103bitr4ri 213 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <->  [ w  /  y ] [ z  /  x ] ( ph  /\  ps ) )
12 elin 3320 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } ) )
13 opelopabsbALT 4261 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
ps ) }  <->  [ w  /  y ] [
z  /  x ]
( ph  /\  ps )
)
1411, 12, 133bitr4i 212 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  ps ) } )
153, 4, 14eqrelriiv 4722 1  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   [wsb 1762    e. wcel 2148    i^i cin 3130   <.cop 3597   {copab 4065   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by:  inxp  4763  resopab  4953  cnvin  5038  fndmin  5625  enq0enq  7432
  Copyright terms: Public domain W3C validator