ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inopab Unicode version

Theorem inopab 4828
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem inopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4822 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 relin1 4811 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 5 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  i^i  {
<. x ,  y >.  |  ps } )
4 relopab 4822 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  ps ) }
5 sban 1984 . . . 4  |-  ( [ w  /  y ] ( [ z  /  x ] ph  /\  [
z  /  x ] ps )  <->  ( [ w  /  y ] [
z  /  x ] ph  /\  [ w  / 
y ] [ z  /  x ] ps ) )
6 sban 1984 . . . . 5  |-  ( [ z  /  x ]
( ph  /\  ps )  <->  ( [ z  /  x ] ph  /\  [ z  /  x ] ps ) )
76sbbii 1789 . . . 4  |-  ( [ w  /  y ] [ z  /  x ] ( ph  /\  ps )  <->  [ w  /  y ] ( [ z  /  x ] ph  /\ 
[ z  /  x ] ps ) )
8 opelopabsbALT 4323 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] [
z  /  x ] ph )
9 opelopabsbALT 4323 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [ w  /  y ] [
z  /  x ] ps )
108, 9anbi12i 460 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <-> 
( [ w  / 
y ] [ z  /  x ] ph  /\ 
[ w  /  y ] [ z  /  x ] ps ) )
115, 7, 103bitr4ri 213 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } )  <->  [ w  /  y ] [ z  /  x ] ( ph  /\  ps ) )
12 elin 3364 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } ) )
13 opelopabsbALT 4323 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
ps ) }  <->  [ w  /  y ] [
z  /  x ]
( ph  /\  ps )
)
1411, 12, 133bitr4i 212 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  ps ) } )
153, 4, 14eqrelriiv 4787 1  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   [wsb 1786    e. wcel 2178    i^i cin 3173   <.cop 3646   {copab 4120   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-rel 4700
This theorem is referenced by:  inxp  4830  resopab  5022  cnvin  5109  fndmin  5710  enq0enq  7579  lgsquadlem3  15671
  Copyright terms: Public domain W3C validator