ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss Unicode version

Theorem dmxpss 5132
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss  |-  dom  ( A  X.  B )  C_  A

Proof of Theorem dmxpss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . 4  |-  x  e. 
_V
21eldm2 4895 . . 3  |-  ( x  e.  dom  ( A  X.  B )  <->  E. y <. x ,  y >.  e.  ( A  X.  B
) )
3 opelxp1 4727 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  A )
43exlimiv 1622 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  X.  B )  ->  x  e.  A )
52, 4sylbi 121 . 2  |-  ( x  e.  dom  ( A  X.  B )  ->  x  e.  A )
65ssriv 3205 1  |-  dom  ( A  X.  B )  C_  A
Colors of variables: wff set class
Syntax hints:   E.wex 1516    e. wcel 2178    C_ wss 3174   <.cop 3646    X. cxp 4691   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-dm 4703
This theorem is referenced by:  rnxpss  5133  dmxpss2  5134  ssxpbm  5137  ssxp1  5138  funssxp  5465  tfrlemibfn  6437  tfr1onlembfn  6453  tfrcllembfn  6466  frecuzrdgtcl  10594  frecuzrdgdomlem  10599  dvbssntrcntop  15271
  Copyright terms: Public domain W3C validator