Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmxpss | Unicode version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . 4 | |
2 | 1 | eldm2 4802 | . . 3 |
3 | opelxp1 4638 | . . . 4 | |
4 | 3 | exlimiv 1586 | . . 3 |
5 | 2, 4 | sylbi 120 | . 2 |
6 | 5 | ssriv 3146 | 1 |
Colors of variables: wff set class |
Syntax hints: wex 1480 wcel 2136 wss 3116 cop 3579 cxp 4602 cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-dm 4614 |
This theorem is referenced by: rnxpss 5035 dmxpss2 5036 ssxpbm 5039 ssxp1 5040 funssxp 5357 tfrlemibfn 6296 tfr1onlembfn 6312 tfrcllembfn 6325 frecuzrdgtcl 10347 frecuzrdgdomlem 10352 dvbssntrcntop 13293 |
Copyright terms: Public domain | W3C validator |