ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss Unicode version

Theorem dmxpss 4905
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss  |-  dom  ( A  X.  B )  C_  A

Proof of Theorem dmxpss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2644 . . . 4  |-  x  e. 
_V
21eldm2 4675 . . 3  |-  ( x  e.  dom  ( A  X.  B )  <->  E. y <. x ,  y >.  e.  ( A  X.  B
) )
3 opelxp1 4511 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  A )
43exlimiv 1545 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  X.  B )  ->  x  e.  A )
52, 4sylbi 120 . 2  |-  ( x  e.  dom  ( A  X.  B )  ->  x  e.  A )
65ssriv 3051 1  |-  dom  ( A  X.  B )  C_  A
Colors of variables: wff set class
Syntax hints:   E.wex 1436    e. wcel 1448    C_ wss 3021   <.cop 3477    X. cxp 4475   dom cdm 4477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-xp 4483  df-dm 4487
This theorem is referenced by:  rnxpss  4906  dmxpss2  4907  ssxpbm  4910  ssxp1  4911  funssxp  5228  tfrlemibfn  6155  tfr1onlembfn  6171  tfrcllembfn  6184  frecuzrdgtcl  10026  frecuzrdgdomlem  10031  dvbssntrcntop  12526
  Copyright terms: Public domain W3C validator