ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss Unicode version

Theorem dmxpss 5158
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss  |-  dom  ( A  X.  B )  C_  A

Proof of Theorem dmxpss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4  |-  x  e. 
_V
21eldm2 4920 . . 3  |-  ( x  e.  dom  ( A  X.  B )  <->  E. y <. x ,  y >.  e.  ( A  X.  B
) )
3 opelxp1 4752 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  A )
43exlimiv 1644 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  X.  B )  ->  x  e.  A )
52, 4sylbi 121 . 2  |-  ( x  e.  dom  ( A  X.  B )  ->  x  e.  A )
65ssriv 3228 1  |-  dom  ( A  X.  B )  C_  A
Colors of variables: wff set class
Syntax hints:   E.wex 1538    e. wcel 2200    C_ wss 3197   <.cop 3669    X. cxp 4716   dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-dm 4728
This theorem is referenced by:  rnxpss  5159  dmxpss2  5160  ssxpbm  5163  ssxp1  5164  funssxp  5492  tfrlemibfn  6472  tfr1onlembfn  6488  tfrcllembfn  6501  frecuzrdgtcl  10629  frecuzrdgdomlem  10634  dvbssntrcntop  15352
  Copyright terms: Public domain W3C validator