Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmxpss | Unicode version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 | |
2 | 1 | eldm2 4818 | . . 3 |
3 | opelxp1 4654 | . . . 4 | |
4 | 3 | exlimiv 1596 | . . 3 |
5 | 2, 4 | sylbi 121 | . 2 |
6 | 5 | ssriv 3157 | 1 |
Colors of variables: wff set class |
Syntax hints: wex 1490 wcel 2146 wss 3127 cop 3592 cxp 4618 cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-dm 4630 |
This theorem is referenced by: rnxpss 5052 dmxpss2 5053 ssxpbm 5056 ssxp1 5057 funssxp 5377 tfrlemibfn 6319 tfr1onlembfn 6335 tfrcllembfn 6348 frecuzrdgtcl 10380 frecuzrdgdomlem 10385 dvbssntrcntop 13722 |
Copyright terms: Public domain | W3C validator |