ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpss Unicode version

Theorem dmxpss 5113
Description: The domain of a cross product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss  |-  dom  ( A  X.  B )  C_  A

Proof of Theorem dmxpss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . 4  |-  x  e. 
_V
21eldm2 4876 . . 3  |-  ( x  e.  dom  ( A  X.  B )  <->  E. y <. x ,  y >.  e.  ( A  X.  B
) )
3 opelxp1 4709 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  A )
43exlimiv 1621 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  X.  B )  ->  x  e.  A )
52, 4sylbi 121 . 2  |-  ( x  e.  dom  ( A  X.  B )  ->  x  e.  A )
65ssriv 3197 1  |-  dom  ( A  X.  B )  C_  A
Colors of variables: wff set class
Syntax hints:   E.wex 1515    e. wcel 2176    C_ wss 3166   <.cop 3636    X. cxp 4673   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-dm 4685
This theorem is referenced by:  rnxpss  5114  dmxpss2  5115  ssxpbm  5118  ssxp1  5119  funssxp  5445  tfrlemibfn  6414  tfr1onlembfn  6430  tfrcllembfn  6443  frecuzrdgtcl  10557  frecuzrdgdomlem  10562  dvbssntrcntop  15156
  Copyright terms: Public domain W3C validator