ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxpd Unicode version

Theorem opelxpd 4693
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
opelxpd.1  |-  ( ph  ->  A  e.  C )
opelxpd.2  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
opelxpd  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )

Proof of Theorem opelxpd
StepHypRef Expression
1 opelxpd.1 . 2  |-  ( ph  ->  A  e.  C )
2 opelxpd.2 . 2  |-  ( ph  ->  B  e.  D )
3 opelxpi 4692 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
41, 2, 3syl2anc 411 1  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   <.cop 3622    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-xp 4666
This theorem is referenced by:  suplocsrlemb  7868  seqvalcd  10535  ctiunctlemfo  12599  strslfv2d  12664  imasaddfnlemg  12900  imasaddflemg  12902  txcnp  14450  upxp  14451  txcnmpt  14452  uptx  14453  txdis1cn  14457  txlm  14458  lmcn2  14459  txhmeo  14498  comet  14678  txmetcnp  14697  dvaddxxbr  14880  dvmulxxbr  14881  dvcoapbr  14886
  Copyright terms: Public domain W3C validator