| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opelxpd | Unicode version | ||
| Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| opelxpd.1 | 
 | 
| opelxpd.2 | 
 | 
| Ref | Expression | 
|---|---|
| opelxpd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxpd.1 | 
. 2
 | |
| 2 | opelxpd.2 | 
. 2
 | |
| 3 | opelxpi 4695 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: suplocsrlemb 7873 seqvalcd 10553 ctiunctlemfo 12656 strslfv2d 12721 imasaddfnlemg 12957 imasaddflemg 12959 txcnp 14507 upxp 14508 txcnmpt 14509 uptx 14510 txdis1cn 14514 txlm 14515 lmcn2 14516 txhmeo 14555 comet 14735 txmetcnp 14754 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 mpodvdsmulf1o 15226 | 
| Copyright terms: Public domain | W3C validator |