ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxpd Unicode version

Theorem opelxpd 4644
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
opelxpd.1  |-  ( ph  ->  A  e.  C )
opelxpd.2  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
opelxpd  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )

Proof of Theorem opelxpd
StepHypRef Expression
1 opelxpd.1 . 2  |-  ( ph  ->  A  e.  C )
2 opelxpd.2 . 2  |-  ( ph  ->  B  e.  D )
3 opelxpi 4643 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
41, 2, 3syl2anc 409 1  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   <.cop 3586    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  suplocsrlemb  7768  seqvalcd  10415  ctiunctlemfo  12394  strslfv2d  12458  txcnp  13065  upxp  13066  txcnmpt  13067  uptx  13068  txdis1cn  13072  txlm  13073  lmcn2  13074  txhmeo  13113  comet  13293  txmetcnp  13312  dvaddxxbr  13459  dvmulxxbr  13460  dvcoapbr  13465
  Copyright terms: Public domain W3C validator