Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxpd | Unicode version |
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
opelxpd.1 | |
opelxpd.2 |
Ref | Expression |
---|---|
opelxpd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpd.1 | . 2 | |
2 | opelxpd.2 | . 2 | |
3 | opelxpi 4643 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cop 3586 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: suplocsrlemb 7768 seqvalcd 10415 ctiunctlemfo 12394 strslfv2d 12458 txcnp 13065 upxp 13066 txcnmpt 13067 uptx 13068 txdis1cn 13072 txlm 13073 lmcn2 13074 txhmeo 13113 comet 13293 txmetcnp 13312 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 |
Copyright terms: Public domain | W3C validator |