ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxpd Unicode version

Theorem opelxpd 4653
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
opelxpd.1  |-  ( ph  ->  A  e.  C )
opelxpd.2  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
opelxpd  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )

Proof of Theorem opelxpd
StepHypRef Expression
1 opelxpd.1 . 2  |-  ( ph  ->  A  e.  C )
2 opelxpd.2 . 2  |-  ( ph  ->  B  e.  D )
3 opelxpi 4652 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
41, 2, 3syl2anc 411 1  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   <.cop 3592    X. cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-xp 4626
This theorem is referenced by:  suplocsrlemb  7780  seqvalcd  10427  ctiunctlemfo  12405  strslfv2d  12469  txcnp  13322  upxp  13323  txcnmpt  13324  uptx  13325  txdis1cn  13329  txlm  13330  lmcn2  13331  txhmeo  13370  comet  13550  txmetcnp  13569  dvaddxxbr  13716  dvmulxxbr  13717  dvcoapbr  13722
  Copyright terms: Public domain W3C validator