| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpd | Unicode version | ||
| Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| opelxpd.1 |
|
| opelxpd.2 |
|
| Ref | Expression |
|---|---|
| opelxpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpd.1 |
. 2
| |
| 2 | opelxpd.2 |
. 2
| |
| 3 | opelxpi 4708 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: suplocsrlemb 7921 seqvalcd 10608 ctiunctlemfo 12843 strslfv2d 12908 imasaddfnlemg 13179 imasaddflemg 13181 txcnp 14776 upxp 14777 txcnmpt 14778 uptx 14779 txdis1cn 14783 txlm 14784 lmcn2 14785 txhmeo 14824 comet 15004 txmetcnp 15023 dvaddxxbr 15206 dvmulxxbr 15207 dvcoapbr 15212 mpodvdsmulf1o 15495 |
| Copyright terms: Public domain | W3C validator |