ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelxpd Unicode version

Theorem opelxpd 4661
Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
opelxpd.1  |-  ( ph  ->  A  e.  C )
opelxpd.2  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
opelxpd  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )

Proof of Theorem opelxpd
StepHypRef Expression
1 opelxpd.1 . 2  |-  ( ph  ->  A  e.  C )
2 opelxpd.2 . 2  |-  ( ph  ->  B  e.  D )
3 opelxpi 4660 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
41, 2, 3syl2anc 411 1  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   <.cop 3597    X. cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634
This theorem is referenced by:  suplocsrlemb  7807  seqvalcd  10461  ctiunctlemfo  12442  strslfv2d  12507  imasaddfnlemg  12740  imasaddflemg  12742  txcnp  13856  upxp  13857  txcnmpt  13858  uptx  13859  txdis1cn  13863  txlm  13864  lmcn2  13865  txhmeo  13904  comet  14084  txmetcnp  14103  dvaddxxbr  14250  dvmulxxbr  14251  dvcoapbr  14256
  Copyright terms: Public domain W3C validator