ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabss Unicode version

Theorem oprabss 5865
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5827 . . 3  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
2 relssdmrn 5067 . . 3  |-  ( Rel 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
31, 2ax-mp 5 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
4 reldmoprab 5864 . . . 4  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
5 df-rel 4554 . . . 4  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  dom  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
64, 5mpbi 144 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  ( _V  X.  _V )
7 ssv 3124 . . 3  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  _V
8 xpss12 4654 . . 3  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  ( _V  X.  _V )  /\  ran  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  _V )  ->  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
)
96, 7, 8mp2an 423 . 2  |-  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
103, 9sstri 3111 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2689    C_ wss 3076    X. cxp 4545   dom cdm 4547   ran crn 4548   Rel wrel 4552   {coprab 5783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-dm 4557  df-rn 4558  df-oprab 5786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator