ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabss Unicode version

Theorem oprabss 5928
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5890 . . 3  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
2 relssdmrn 5124 . . 3  |-  ( Rel 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
31, 2ax-mp 5 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
4 reldmoprab 5927 . . . 4  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
5 df-rel 4611 . . . 4  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  dom  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
64, 5mpbi 144 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  ( _V  X.  _V )
7 ssv 3164 . . 3  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  _V
8 xpss12 4711 . . 3  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  ( _V  X.  _V )  /\  ran  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  _V )  ->  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
)
96, 7, 8mp2an 423 . 2  |-  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
103, 9sstri 3151 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2726    C_ wss 3116    X. cxp 4602   dom cdm 4604   ran crn 4605   Rel wrel 4609   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-oprab 5846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator