ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabss GIF version

Theorem oprabss 6021
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5983 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 relssdmrn 5200 . . 3 (Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
31, 2ax-mp 5 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 reldmoprab 6020 . . . 4 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 df-rel 4680 . . . 4 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V))
64, 5mpbi 145 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V)
7 ssv 3214 . . 3 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V
8 xpss12 4780 . . 3 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ (V × V) ∧ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ V) → (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V))
96, 7, 8mp2an 426 . 2 (dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} × ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ⊆ ((V × V) × V)
103, 9sstri 3201 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2771  wss 3165   × cxp 4671  dom cdm 4673  ran crn 4674  Rel wrel 4678  {coprab 5935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4679  df-rel 4680  df-cnv 4681  df-dm 4683  df-rn 4684  df-oprab 5938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator