Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relssdmrn | Unicode version |
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
relssdmrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 19.8a 1583 | . . . 4 | |
3 | 19.8a 1583 | . . . 4 | |
4 | opelxp 4641 | . . . . 5 | |
5 | vex 2733 | . . . . . . 7 | |
6 | 5 | eldm2 4809 | . . . . . 6 |
7 | vex 2733 | . . . . . . 7 | |
8 | 7 | elrn2 4853 | . . . . . 6 |
9 | 6, 8 | anbi12i 457 | . . . . 5 |
10 | 4, 9 | bitri 183 | . . . 4 |
11 | 2, 3, 10 | sylanbrc 415 | . . 3 |
12 | 11 | a1i 9 | . 2 |
13 | 1, 12 | relssdv 4703 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 wcel 2141 wss 3121 cop 3586 cxp 4609 cdm 4611 crn 4612 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: cnvssrndm 5132 cossxp 5133 relrelss 5137 relfld 5139 cnvexg 5148 fssxp 5365 oprabss 5939 resfunexgALT 6087 cofunexg 6088 fnexALT 6090 funexw 6091 erssxp 6536 |
Copyright terms: Public domain | W3C validator |