ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngidpropdg Unicode version

Theorem rngidpropdg 13728
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
rngidpropdg.k  |-  ( ph  ->  K  e.  V )
rngidpropdg.l  |-  ( ph  ->  L  e.  W )
Assertion
Ref Expression
rngidpropdg  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem rngidpropdg
StepHypRef Expression
1 rngidpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 rngidpropdg.k . . . . 5  |-  ( ph  ->  K  e.  V )
3 eqid 2196 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
4 eqid 2196 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
53, 4mgpbasg 13508 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
62, 5syl 14 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (mulGrp `  K )
) )
71, 6eqtrd 2229 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
8 rngidpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
9 rngidpropdg.l . . . . 5  |-  ( ph  ->  L  e.  W )
10 eqid 2196 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
11 eqid 2196 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
1210, 11mgpbasg 13508 . . . . 5  |-  ( L  e.  W  ->  ( Base `  L )  =  ( Base `  (mulGrp `  L ) ) )
139, 12syl 14 . . . 4  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (mulGrp `  L )
) )
148, 13eqtrd 2229 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
153mgpex 13507 . . . 4  |-  ( K  e.  V  ->  (mulGrp `  K )  e.  _V )
162, 15syl 14 . . 3  |-  ( ph  ->  (mulGrp `  K )  e.  _V )
1710mgpex 13507 . . . 4  |-  ( L  e.  W  ->  (mulGrp `  L )  e.  _V )
189, 17syl 14 . . 3  |-  ( ph  ->  (mulGrp `  L )  e.  _V )
19 rngidpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
20 eqid 2196 . . . . . . 7  |-  ( .r
`  K )  =  ( .r `  K
)
213, 20mgpplusgg 13506 . . . . . 6  |-  ( K  e.  V  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
222, 21syl 14 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
2322oveqdr 5951 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( +g  `  (mulGrp `  K ) ) y ) )
24 eqid 2196 . . . . . . 7  |-  ( .r
`  L )  =  ( .r `  L
)
2510, 24mgpplusgg 13506 . . . . . 6  |-  ( L  e.  W  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
269, 25syl 14 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
2726oveqdr 5951 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
2819, 23, 273eqtr3d 2237 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
297, 14, 16, 18, 28grpidpropdg 13043 . 2  |-  ( ph  ->  ( 0g `  (mulGrp `  K ) )  =  ( 0g `  (mulGrp `  L ) ) )
30 eqid 2196 . . . 4  |-  ( 1r
`  K )  =  ( 1r `  K
)
313, 30ringidvalg 13543 . . 3  |-  ( K  e.  V  ->  ( 1r `  K )  =  ( 0g `  (mulGrp `  K ) ) )
322, 31syl 14 . 2  |-  ( ph  ->  ( 1r `  K
)  =  ( 0g
`  (mulGrp `  K )
) )
33 eqid 2196 . . . 4  |-  ( 1r
`  L )  =  ( 1r `  L
)
3410, 33ringidvalg 13543 . . 3  |-  ( L  e.  W  ->  ( 1r `  L )  =  ( 0g `  (mulGrp `  L ) ) )
359, 34syl 14 . 2  |-  ( ph  ->  ( 1r `  L
)  =  ( 0g
`  (mulGrp `  L )
) )
3629, 32, 353eqtr4d 2239 1  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   ` cfv 5259  (class class class)co 5923   Basecbs 12689   +g cplusg 12766   .rcmulr 12767   0gc0g 12944  mulGrpcmgp 13502   1rcur 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-pre-ltirr 7994  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-ltxr 8069  df-inn 8994  df-2 9052  df-3 9053  df-ndx 12692  df-slot 12693  df-base 12695  df-sets 12696  df-plusg 12779  df-mulr 12780  df-0g 12946  df-mgp 13503  df-ur 13542
This theorem is referenced by:  unitpropdg  13730  subrgpropd  13835  lmodprop2d  13930
  Copyright terms: Public domain W3C validator