| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngidpropdg | Unicode version | ||
| Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 |
|
| rngidpropd.2 |
|
| rngidpropd.3 |
|
| rngidpropdg.k |
|
| rngidpropdg.l |
|
| Ref | Expression |
|---|---|
| rngidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 |
. . . 4
| |
| 2 | rngidpropdg.k |
. . . . 5
| |
| 3 | eqid 2196 |
. . . . . 6
| |
| 4 | eqid 2196 |
. . . . . 6
| |
| 5 | 3, 4 | mgpbasg 13508 |
. . . . 5
|
| 6 | 2, 5 | syl 14 |
. . . 4
|
| 7 | 1, 6 | eqtrd 2229 |
. . 3
|
| 8 | rngidpropd.2 |
. . . 4
| |
| 9 | rngidpropdg.l |
. . . . 5
| |
| 10 | eqid 2196 |
. . . . . 6
| |
| 11 | eqid 2196 |
. . . . . 6
| |
| 12 | 10, 11 | mgpbasg 13508 |
. . . . 5
|
| 13 | 9, 12 | syl 14 |
. . . 4
|
| 14 | 8, 13 | eqtrd 2229 |
. . 3
|
| 15 | 3 | mgpex 13507 |
. . . 4
|
| 16 | 2, 15 | syl 14 |
. . 3
|
| 17 | 10 | mgpex 13507 |
. . . 4
|
| 18 | 9, 17 | syl 14 |
. . 3
|
| 19 | rngidpropd.3 |
. . . 4
| |
| 20 | eqid 2196 |
. . . . . . 7
| |
| 21 | 3, 20 | mgpplusgg 13506 |
. . . . . 6
|
| 22 | 2, 21 | syl 14 |
. . . . 5
|
| 23 | 22 | oveqdr 5951 |
. . . 4
|
| 24 | eqid 2196 |
. . . . . . 7
| |
| 25 | 10, 24 | mgpplusgg 13506 |
. . . . . 6
|
| 26 | 9, 25 | syl 14 |
. . . . 5
|
| 27 | 26 | oveqdr 5951 |
. . . 4
|
| 28 | 19, 23, 27 | 3eqtr3d 2237 |
. . 3
|
| 29 | 7, 14, 16, 18, 28 | grpidpropdg 13043 |
. 2
|
| 30 | eqid 2196 |
. . . 4
| |
| 31 | 3, 30 | ringidvalg 13543 |
. . 3
|
| 32 | 2, 31 | syl 14 |
. 2
|
| 33 | eqid 2196 |
. . . 4
| |
| 34 | 10, 33 | ringidvalg 13543 |
. . 3
|
| 35 | 9, 34 | syl 14 |
. 2
|
| 36 | 29, 32, 35 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-pre-ltirr 7994 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8066 df-mnf 8067 df-ltxr 8069 df-inn 8994 df-2 9052 df-3 9053 df-ndx 12692 df-slot 12693 df-base 12695 df-sets 12696 df-plusg 12779 df-mulr 12780 df-0g 12946 df-mgp 13503 df-ur 13542 |
| This theorem is referenced by: unitpropdg 13730 subrgpropd 13835 lmodprop2d 13930 |
| Copyright terms: Public domain | W3C validator |