ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngidpropdg Unicode version

Theorem rngidpropdg 13908
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
rngidpropdg.k  |-  ( ph  ->  K  e.  V )
rngidpropdg.l  |-  ( ph  ->  L  e.  W )
Assertion
Ref Expression
rngidpropdg  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem rngidpropdg
StepHypRef Expression
1 rngidpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 rngidpropdg.k . . . . 5  |-  ( ph  ->  K  e.  V )
3 eqid 2205 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
4 eqid 2205 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
53, 4mgpbasg 13688 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
62, 5syl 14 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (mulGrp `  K )
) )
71, 6eqtrd 2238 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
8 rngidpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
9 rngidpropdg.l . . . . 5  |-  ( ph  ->  L  e.  W )
10 eqid 2205 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
11 eqid 2205 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
1210, 11mgpbasg 13688 . . . . 5  |-  ( L  e.  W  ->  ( Base `  L )  =  ( Base `  (mulGrp `  L ) ) )
139, 12syl 14 . . . 4  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (mulGrp `  L )
) )
148, 13eqtrd 2238 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
153mgpex 13687 . . . 4  |-  ( K  e.  V  ->  (mulGrp `  K )  e.  _V )
162, 15syl 14 . . 3  |-  ( ph  ->  (mulGrp `  K )  e.  _V )
1710mgpex 13687 . . . 4  |-  ( L  e.  W  ->  (mulGrp `  L )  e.  _V )
189, 17syl 14 . . 3  |-  ( ph  ->  (mulGrp `  L )  e.  _V )
19 rngidpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
20 eqid 2205 . . . . . . 7  |-  ( .r
`  K )  =  ( .r `  K
)
213, 20mgpplusgg 13686 . . . . . 6  |-  ( K  e.  V  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
222, 21syl 14 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
2322oveqdr 5972 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( +g  `  (mulGrp `  K ) ) y ) )
24 eqid 2205 . . . . . . 7  |-  ( .r
`  L )  =  ( .r `  L
)
2510, 24mgpplusgg 13686 . . . . . 6  |-  ( L  e.  W  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
269, 25syl 14 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
2726oveqdr 5972 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
2819, 23, 273eqtr3d 2246 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
297, 14, 16, 18, 28grpidpropdg 13206 . 2  |-  ( ph  ->  ( 0g `  (mulGrp `  K ) )  =  ( 0g `  (mulGrp `  L ) ) )
30 eqid 2205 . . . 4  |-  ( 1r
`  K )  =  ( 1r `  K
)
313, 30ringidvalg 13723 . . 3  |-  ( K  e.  V  ->  ( 1r `  K )  =  ( 0g `  (mulGrp `  K ) ) )
322, 31syl 14 . 2  |-  ( ph  ->  ( 1r `  K
)  =  ( 0g
`  (mulGrp `  K )
) )
33 eqid 2205 . . . 4  |-  ( 1r
`  L )  =  ( 1r `  L
)
3410, 33ringidvalg 13723 . . 3  |-  ( L  e.  W  ->  ( 1r `  L )  =  ( 0g `  (mulGrp `  L ) ) )
359, 34syl 14 . 2  |-  ( ph  ->  ( 1r `  L
)  =  ( 0g
`  (mulGrp `  L )
) )
3629, 32, 353eqtr4d 2248 1  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   0gc0g 13088  mulGrpcmgp 13682   1rcur 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgp 13683  df-ur 13722
This theorem is referenced by:  unitpropdg  13910  subrgpropd  14015  lmodprop2d  14110
  Copyright terms: Public domain W3C validator