ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngidpropdg Unicode version

Theorem rngidpropdg 13642
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
rngidpropdg.k  |-  ( ph  ->  K  e.  V )
rngidpropdg.l  |-  ( ph  ->  L  e.  W )
Assertion
Ref Expression
rngidpropdg  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem rngidpropdg
StepHypRef Expression
1 rngidpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 rngidpropdg.k . . . . 5  |-  ( ph  ->  K  e.  V )
3 eqid 2193 . . . . . 6  |-  (mulGrp `  K )  =  (mulGrp `  K )
4 eqid 2193 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
53, 4mgpbasg 13422 . . . . 5  |-  ( K  e.  V  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
62, 5syl 14 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (mulGrp `  K )
) )
71, 6eqtrd 2226 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
8 rngidpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
9 rngidpropdg.l . . . . 5  |-  ( ph  ->  L  e.  W )
10 eqid 2193 . . . . . 6  |-  (mulGrp `  L )  =  (mulGrp `  L )
11 eqid 2193 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
1210, 11mgpbasg 13422 . . . . 5  |-  ( L  e.  W  ->  ( Base `  L )  =  ( Base `  (mulGrp `  L ) ) )
139, 12syl 14 . . . 4  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (mulGrp `  L )
) )
148, 13eqtrd 2226 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
153mgpex 13421 . . . 4  |-  ( K  e.  V  ->  (mulGrp `  K )  e.  _V )
162, 15syl 14 . . 3  |-  ( ph  ->  (mulGrp `  K )  e.  _V )
1710mgpex 13421 . . . 4  |-  ( L  e.  W  ->  (mulGrp `  L )  e.  _V )
189, 17syl 14 . . 3  |-  ( ph  ->  (mulGrp `  L )  e.  _V )
19 rngidpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
20 eqid 2193 . . . . . . 7  |-  ( .r
`  K )  =  ( .r `  K
)
213, 20mgpplusgg 13420 . . . . . 6  |-  ( K  e.  V  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
222, 21syl 14 . . . . 5  |-  ( ph  ->  ( .r `  K
)  =  ( +g  `  (mulGrp `  K )
) )
2322oveqdr 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( +g  `  (mulGrp `  K ) ) y ) )
24 eqid 2193 . . . . . . 7  |-  ( .r
`  L )  =  ( .r `  L
)
2510, 24mgpplusgg 13420 . . . . . 6  |-  ( L  e.  W  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
269, 25syl 14 . . . . 5  |-  ( ph  ->  ( .r `  L
)  =  ( +g  `  (mulGrp `  L )
) )
2726oveqdr 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
2819, 23, 273eqtr3d 2234 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
297, 14, 16, 18, 28grpidpropdg 12957 . 2  |-  ( ph  ->  ( 0g `  (mulGrp `  K ) )  =  ( 0g `  (mulGrp `  L ) ) )
30 eqid 2193 . . . 4  |-  ( 1r
`  K )  =  ( 1r `  K
)
313, 30ringidvalg 13457 . . 3  |-  ( K  e.  V  ->  ( 1r `  K )  =  ( 0g `  (mulGrp `  K ) ) )
322, 31syl 14 . 2  |-  ( ph  ->  ( 1r `  K
)  =  ( 0g
`  (mulGrp `  K )
) )
33 eqid 2193 . . . 4  |-  ( 1r
`  L )  =  ( 1r `  L
)
3410, 33ringidvalg 13457 . . 3  |-  ( L  e.  W  ->  ( 1r `  L )  =  ( 0g `  (mulGrp `  L ) ) )
359, 34syl 14 . 2  |-  ( ph  ->  ( 1r `  L
)  =  ( 0g
`  (mulGrp `  L )
) )
3629, 32, 353eqtr4d 2236 1  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867  mulGrpcmgp 13416   1rcur 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgp 13417  df-ur 13456
This theorem is referenced by:  unitpropdg  13644  subrgpropd  13749  lmodprop2d  13844
  Copyright terms: Public domain W3C validator