ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprringbg Unicode version

Theorem opprringbg 13323
Description: Bidirectional form of opprring 13322. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprringbg  |-  ( R  e.  V  ->  ( R  e.  Ring  <->  O  e.  Ring ) )

Proof of Theorem opprringbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
21opprring 13322 . 2  |-  ( R  e.  Ring  ->  O  e. 
Ring )
3 eqid 2187 . . . . . 6  |-  (oppr `  O
)  =  (oppr `  O
)
43opprring 13322 . . . . 5  |-  ( O  e.  Ring  ->  (oppr `  O
)  e.  Ring )
54adantl 277 . . . 4  |-  ( ( R  e.  V  /\  O  e.  Ring )  -> 
(oppr `  O )  e.  Ring )
6 eqidd 2188 . . . . 5  |-  ( ( R  e.  V  /\  O  e.  Ring )  -> 
( Base `  R )  =  ( Base `  R
) )
7 eqid 2187 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
81, 7opprbasg 13318 . . . . . 6  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
9 eqid 2187 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
103, 9opprbasg 13318 . . . . . 6  |-  ( O  e.  Ring  ->  ( Base `  O )  =  (
Base `  (oppr
`  O ) ) )
118, 10sylan9eq 2240 . . . . 5  |-  ( ( R  e.  V  /\  O  e.  Ring )  -> 
( Base `  R )  =  ( Base `  (oppr `  O
) ) )
12 eqid 2187 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
131, 12oppraddg 13319 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
14 eqid 2187 . . . . . . . 8  |-  ( +g  `  O )  =  ( +g  `  O )
153, 14oppraddg 13319 . . . . . . 7  |-  ( O  e.  Ring  ->  ( +g  `  O )  =  ( +g  `  (oppr `  O
) ) )
1613, 15sylan9eq 2240 . . . . . 6  |-  ( ( R  e.  V  /\  O  e.  Ring )  -> 
( +g  `  R )  =  ( +g  `  (oppr `  O
) ) )
1716oveqdr 5916 . . . . 5  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  (oppr
`  O ) ) y ) )
18 eqid 2187 . . . . . . . . 9  |-  ( .r
`  O )  =  ( .r `  O
)
19 eqid 2187 . . . . . . . . 9  |-  ( .r
`  (oppr
`  O ) )  =  ( .r `  (oppr `  O ) )
209, 18, 3, 19opprmulg 13314 . . . . . . . 8  |-  ( ( O  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  (oppr `  O
) ) y )  =  ( y ( .r `  O ) x ) )
21203adant1l 1231 . . . . . . 7  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( .r `  (oppr `  O
) ) y )  =  ( y ( .r `  O ) x ) )
22 simp1l 1022 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  R  e.  V
)
23 simp3 1000 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  y  e.  (
Base `  R )
)
24 simp2 999 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  x  e.  (
Base `  R )
)
25 eqid 2187 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
267, 25, 1, 18opprmulg 13314 . . . . . . . 8  |-  ( ( R  e.  V  /\  y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
2722, 23, 24, 26syl3anc 1248 . . . . . . 7  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
2821, 27eqtr2d 2221 . . . . . 6  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  x  e.  (
Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( .r `  R ) y )  =  ( x ( .r `  (oppr `  O ) ) y ) )
29283expb 1205 . . . . 5  |-  ( ( ( R  e.  V  /\  O  e.  Ring )  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x ( .r `  R ) y )  =  ( x ( .r `  (oppr `  O
) ) y ) )
306, 11, 17, 29ringpropd 13285 . . . 4  |-  ( ( R  e.  V  /\  O  e.  Ring )  -> 
( R  e.  Ring  <->  (oppr `  O
)  e.  Ring )
)
315, 30mpbird 167 . . 3  |-  ( ( R  e.  V  /\  O  e.  Ring )  ->  R  e.  Ring )
3231ex 115 . 2  |-  ( R  e.  V  ->  ( O  e.  Ring  ->  R  e.  Ring ) )
332, 32impbid2 143 1  |-  ( R  e.  V  ->  ( R  e.  Ring  <->  O  e.  Ring ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   .rcmulr 12551   Ringcrg 13243  opprcoppr 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-tpos 6259  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-plusg 12563  df-mulr 12564  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-mgp 13171  df-ur 13207  df-ring 13245  df-oppr 13311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator