ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngpropd Unicode version

Theorem crngpropd 14002
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ringpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ringpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
ringpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
crngpropd  |-  ( ph  ->  ( K  e.  CRing  <->  L  e.  CRing ) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
2 eqid 2229 . . . . . . 7  |-  (mulGrp `  K )  =  (mulGrp `  K )
3 eqid 2229 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
42, 3mgpbasg 13889 . . . . . 6  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
51, 4sylan9eq 2282 . . . . 5  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  (mulGrp `  K
) ) )
6 ringpropd.2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  L ) )
76adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  L )
)
8 ringpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
9 ringpropd.4 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
101, 6, 8, 9ringpropd 14001 . . . . . . . 8  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
1110biimpa 296 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  L  e.  Ring )
12 eqid 2229 . . . . . . . 8  |-  (mulGrp `  L )  =  (mulGrp `  L )
13 eqid 2229 . . . . . . . 8  |-  ( Base `  L )  =  (
Base `  L )
1412, 13mgpbasg 13889 . . . . . . 7  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
1511, 14syl 14 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
167, 15eqtrd 2262 . . . . 5  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  (mulGrp `  L
) ) )
179adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( .r
`  L ) y ) )
18 eqid 2229 . . . . . . . . 9  |-  ( .r
`  K )  =  ( .r `  K
)
192, 18mgpplusgg 13887 . . . . . . . 8  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
2019adantl 277 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
2120oveqdr 6029 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y ) )
22 eqid 2229 . . . . . . . . 9  |-  ( .r
`  L )  =  ( .r `  L
)
2312, 22mgpplusgg 13887 . . . . . . . 8  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
2411, 23syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
2524oveqdr 6029 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
2617, 21, 253eqtr3d 2270 . . . . 5  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
275, 16, 26cmnpropd 13832 . . . 4  |-  ( (
ph  /\  K  e.  Ring )  ->  ( (mulGrp `  K )  e. CMnd  <->  (mulGrp `  L
)  e. CMnd ) )
2827pm5.32da 452 . . 3  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  K
)  e. CMnd )  <->  ( K  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
2910anbi1d 465 . . 3  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  L
)  e. CMnd )  <->  ( L  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
3028, 29bitrd 188 . 2  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  K
)  e. CMnd )  <->  ( L  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
312iscrng 13966 . 2  |-  ( K  e.  CRing 
<->  ( K  e.  Ring  /\  (mulGrp `  K )  e. CMnd ) )
3212iscrng 13966 . 2  |-  ( L  e.  CRing 
<->  ( L  e.  Ring  /\  (mulGrp `  L )  e. CMnd ) )
3330, 31, 323bitr4g 223 1  |-  ( ph  ->  ( K  e.  CRing  <->  L  e.  CRing ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111  CMndccmn 13821  mulGrpcmgp 13883   Ringcrg 13959   CRingccrg 13960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-cmn 13823  df-mgp 13884  df-ring 13961  df-cring 13962
This theorem is referenced by:  zncrng  14609
  Copyright terms: Public domain W3C validator