ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngpropd Unicode version

Theorem crngpropd 13535
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ringpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ringpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ringpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
ringpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
crngpropd  |-  ( ph  ->  ( K  e.  CRing  <->  L  e.  CRing ) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem crngpropd
StepHypRef Expression
1 ringpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
2 eqid 2193 . . . . . . 7  |-  (mulGrp `  K )  =  (mulGrp `  K )
3 eqid 2193 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
42, 3mgpbasg 13422 . . . . . 6  |-  ( K  e.  Ring  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
51, 4sylan9eq 2246 . . . . 5  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  (mulGrp `  K
) ) )
6 ringpropd.2 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  L ) )
76adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  L )
)
8 ringpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
9 ringpropd.4 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
101, 6, 8, 9ringpropd 13534 . . . . . . . 8  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
1110biimpa 296 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  L  e.  Ring )
12 eqid 2193 . . . . . . . 8  |-  (mulGrp `  L )  =  (mulGrp `  L )
13 eqid 2193 . . . . . . . 8  |-  ( Base `  L )  =  (
Base `  L )
1412, 13mgpbasg 13422 . . . . . . 7  |-  ( L  e.  Ring  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
1511, 14syl 14 . . . . . 6  |-  ( (
ph  /\  K  e.  Ring )  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
167, 15eqtrd 2226 . . . . 5  |-  ( (
ph  /\  K  e.  Ring )  ->  B  =  ( Base `  (mulGrp `  L
) ) )
179adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( .r
`  L ) y ) )
18 eqid 2193 . . . . . . . . 9  |-  ( .r
`  K )  =  ( .r `  K
)
192, 18mgpplusgg 13420 . . . . . . . 8  |-  ( K  e.  Ring  ->  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) ) )
2019adantl 277 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
2120oveqdr 5946 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y ) )
22 eqid 2193 . . . . . . . . 9  |-  ( .r
`  L )  =  ( .r `  L
)
2312, 22mgpplusgg 13420 . . . . . . . 8  |-  ( L  e.  Ring  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
2411, 23syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Ring )  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
2524oveqdr 5946 . . . . . 6  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
2617, 21, 253eqtr3d 2234 . . . . 5  |-  ( ( ( ph  /\  K  e.  Ring )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) )
275, 16, 26cmnpropd 13365 . . . 4  |-  ( (
ph  /\  K  e.  Ring )  ->  ( (mulGrp `  K )  e. CMnd  <->  (mulGrp `  L
)  e. CMnd ) )
2827pm5.32da 452 . . 3  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  K
)  e. CMnd )  <->  ( K  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
2910anbi1d 465 . . 3  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  L
)  e. CMnd )  <->  ( L  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
3028, 29bitrd 188 . 2  |-  ( ph  ->  ( ( K  e. 
Ring  /\  (mulGrp `  K
)  e. CMnd )  <->  ( L  e.  Ring  /\  (mulGrp `  L
)  e. CMnd ) )
)
312iscrng 13499 . 2  |-  ( K  e.  CRing 
<->  ( K  e.  Ring  /\  (mulGrp `  K )  e. CMnd ) )
3212iscrng 13499 . 2  |-  ( L  e.  CRing 
<->  ( L  e.  Ring  /\  (mulGrp `  L )  e. CMnd ) )
3330, 31, 323bitr4g 223 1  |-  ( ph  ->  ( K  e.  CRing  <->  L  e.  CRing ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696  CMndccmn 13354  mulGrpcmgp 13416   Ringcrg 13492   CRingccrg 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-cmn 13356  df-mgp 13417  df-ring 13494  df-cring 13495
This theorem is referenced by:  zncrng  14133
  Copyright terms: Public domain W3C validator