Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > crngpropd | Unicode version |
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ringpropd.1 | |
ringpropd.2 | |
ringpropd.3 | |
ringpropd.4 |
Ref | Expression |
---|---|
crngpropd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringpropd.1 | . . . . . 6 | |
2 | eqid 2175 | . . . . . . 7 mulGrp mulGrp | |
3 | eqid 2175 | . . . . . . 7 | |
4 | 2, 3 | mgpbasg 12930 | . . . . . 6 mulGrp |
5 | 1, 4 | sylan9eq 2228 | . . . . 5 mulGrp |
6 | ringpropd.2 | . . . . . . 7 | |
7 | 6 | adantr 276 | . . . . . 6 |
8 | ringpropd.3 | . . . . . . . . 9 | |
9 | ringpropd.4 | . . . . . . . . 9 | |
10 | 1, 6, 8, 9 | ringpropd 13009 | . . . . . . . 8 |
11 | 10 | biimpa 296 | . . . . . . 7 |
12 | eqid 2175 | . . . . . . . 8 mulGrp mulGrp | |
13 | eqid 2175 | . . . . . . . 8 | |
14 | 12, 13 | mgpbasg 12930 | . . . . . . 7 mulGrp |
15 | 11, 14 | syl 14 | . . . . . 6 mulGrp |
16 | 7, 15 | eqtrd 2208 | . . . . 5 mulGrp |
17 | 9 | adantlr 477 | . . . . . 6 |
18 | eqid 2175 | . . . . . . . . 9 | |
19 | 2, 18 | mgpplusgg 12929 | . . . . . . . 8 mulGrp |
20 | 19 | adantl 277 | . . . . . . 7 mulGrp |
21 | 20 | oveqdr 5893 | . . . . . 6 mulGrp |
22 | eqid 2175 | . . . . . . . . 9 | |
23 | 12, 22 | mgpplusgg 12929 | . . . . . . . 8 mulGrp |
24 | 11, 23 | syl 14 | . . . . . . 7 mulGrp |
25 | 24 | oveqdr 5893 | . . . . . 6 mulGrp |
26 | 17, 21, 25 | 3eqtr3d 2216 | . . . . 5 mulGrp mulGrp |
27 | 5, 16, 26 | cmnpropd 12894 | . . . 4 mulGrp CMnd mulGrp CMnd |
28 | 27 | pm5.32da 452 | . . 3 mulGrp CMnd mulGrp CMnd |
29 | 10 | anbi1d 465 | . . 3 mulGrp CMnd mulGrp CMnd |
30 | 28, 29 | bitrd 188 | . 2 mulGrp CMnd mulGrp CMnd |
31 | 2 | iscrng 12979 | . 2 mulGrp CMnd |
32 | 12 | iscrng 12979 | . 2 mulGrp CMnd |
33 | 30, 31, 32 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmulr 12493 CMndccmn 12884 mulGrpcmgp 12925 crg 12972 ccrg 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-cmn 12886 df-mgp 12926 df-ring 12974 df-cring 12975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |