ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 Unicode version

Theorem mulgass3 13922
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b  |-  B  =  ( Base `  R
)
mulgass3.m  |-  .x.  =  (.g
`  R )
mulgass3.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13916 . . . . 5  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
32adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Ring )
4 simpr1 1006 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  N  e.  ZZ )
5 simpr3 1008 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
6 mulgass3.b . . . . . . 7  |-  B  =  ( Base `  R
)
71, 6opprbasg 13912 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
87adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  (oppr
`  R ) ) )
95, 8eleqtrd 2285 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  ( Base `  (oppr
`  R ) ) )
10 simpr2 1007 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
1110, 8eleqtrd 2285 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  ( Base `  (oppr
`  R ) ) )
12 eqid 2206 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
13 eqid 2206 . . . . 5  |-  (.g `  (oppr `  R
) )  =  (.g `  (oppr
`  R ) )
14 eqid 2206 . . . . 5  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1512, 13, 14mulgass2 13895 . . . 4  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N  e.  ZZ  /\  Y  e.  ( Base `  (oppr `  R
) )  /\  X  e.  ( Base `  (oppr `  R
) ) ) )  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
163, 4, 9, 11, 15syl13anc 1252 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
17 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  R  e.  Ring )
183ringgrpd 13842 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Grp )
1912, 13, 18, 4, 9mulgcld 13555 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  ( Base `  (oppr `  R
) ) )
2019, 8eleqtrrd 2286 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  B )
21 mulgass3.t . . . . 5  |-  .X.  =  ( .r `  R )
226, 21, 1, 14opprmulg 13908 . . . 4  |-  ( ( R  e.  Ring  /\  ( N (.g `  (oppr
`  R ) ) Y )  e.  B  /\  X  e.  B
)  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
2317, 20, 10, 22syl3anc 1250 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
246, 21, 1, 14opprmulg 13908 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.X.  Y ) )
2517, 5, 10, 24syl3anc 1250 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( Y ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  Y )
)
2625oveq2d 5973 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) ( Y ( .r `  (oppr `  R
) ) X ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
2716, 23, 263eqtr3d 2247 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) )  =  ( N (.g `  (oppr `  R
) ) ( X 
.X.  Y ) ) )
28 mulgass3.m . . . . . 6  |-  .x.  =  (.g
`  R )
2928a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  R ) )
30 eqidd 2207 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(.g `  (oppr
`  R ) )  =  (.g `  (oppr
`  R ) ) )
316a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  R ) )
32 ssidd 3218 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  C_  B )
33 eqid 2206 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
346, 33ringacl 13867 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
35343expb 1207 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
3635adantlr 477 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  e.  B )
371, 33oppraddg 13913 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
3837oveqdr 5985 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
3938adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 13575 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  (oppr
`  R ) ) )
4140oveqd 5974 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  Y
)  =  ( N (.g `  (oppr
`  R ) ) Y ) )
4241oveq2d 5973 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) ) )
4340oveqd 5974 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  ( X  .X.  Y ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
4427, 42, 433eqtr4d 2249 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957   ZZcz 9392   Basecbs 12907   +g cplusg 12984   .rcmulr 12985  .gcmg 13530   Ringcrg 13833  opprcoppr 13904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-tpos 6344  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-3 9116  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-mulg 13531  df-mgp 13758  df-ur 13797  df-ring 13835  df-oppr 13905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator