ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 Unicode version

Theorem mulgass3 13207
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b  |-  B  =  ( Base `  R
)
mulgass3.m  |-  .x.  =  (.g
`  R )
mulgass3.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13202 . . . . 5  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
32adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Ring )
4 simpr1 1003 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  N  e.  ZZ )
5 simpr3 1005 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
6 mulgass3.b . . . . . . 7  |-  B  =  ( Base `  R
)
71, 6opprbasg 13200 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
87adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  (oppr
`  R ) ) )
95, 8eleqtrd 2256 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  ( Base `  (oppr
`  R ) ) )
10 simpr2 1004 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
1110, 8eleqtrd 2256 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  ( Base `  (oppr
`  R ) ) )
12 eqid 2177 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
13 eqid 2177 . . . . 5  |-  (.g `  (oppr `  R
) )  =  (.g `  (oppr
`  R ) )
14 eqid 2177 . . . . 5  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1512, 13, 14mulgass2 13188 . . . 4  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N  e.  ZZ  /\  Y  e.  ( Base `  (oppr `  R
) )  /\  X  e.  ( Base `  (oppr `  R
) ) ) )  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
163, 4, 9, 11, 15syl13anc 1240 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
17 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  R  e.  Ring )
183ringgrpd 13141 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Grp )
1912, 13, 18, 4, 9mulgcld 12958 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  ( Base `  (oppr `  R
) ) )
2019, 8eleqtrrd 2257 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  B )
21 mulgass3.t . . . . 5  |-  .X.  =  ( .r `  R )
226, 21, 1, 14opprmulg 13196 . . . 4  |-  ( ( R  e.  Ring  /\  ( N (.g `  (oppr
`  R ) ) Y )  e.  B  /\  X  e.  B
)  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
2317, 20, 10, 22syl3anc 1238 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
246, 21, 1, 14opprmulg 13196 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.X.  Y ) )
2517, 5, 10, 24syl3anc 1238 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( Y ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  Y )
)
2625oveq2d 5890 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) ( Y ( .r `  (oppr `  R
) ) X ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
2716, 23, 263eqtr3d 2218 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) )  =  ( N (.g `  (oppr `  R
) ) ( X 
.X.  Y ) ) )
28 mulgass3.m . . . . . 6  |-  .x.  =  (.g
`  R )
2928a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  R ) )
30 eqidd 2178 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(.g `  (oppr
`  R ) )  =  (.g `  (oppr
`  R ) ) )
316a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  R ) )
32 ssidd 3176 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  C_  B )
33 eqid 2177 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
346, 33ringacl 13166 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
35343expb 1204 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
3635adantlr 477 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  e.  B )
371, 33oppraddg 13201 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
3837oveqdr 5902 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
3938adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 12978 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  (oppr
`  R ) ) )
4140oveqd 5891 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  Y
)  =  ( N (.g `  (oppr
`  R ) ) Y ) )
4241oveq2d 5890 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) ) )
4340oveqd 5891 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  ( X  .X.  Y ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
4427, 42, 433eqtr4d 2220 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5216  (class class class)co 5874   ZZcz 9251   Basecbs 12456   +g cplusg 12530   .rcmulr 12531  .gcmg 12937   Ringcrg 13132  opprcoppr 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-tpos 6245  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-2 8976  df-3 8977  df-n0 9175  df-z 9252  df-uz 9527  df-fz 10007  df-seqfrec 10443  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-minusg 12835  df-mulg 12938  df-mgp 13084  df-ur 13096  df-ring 13134  df-oppr 13193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator