| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgass3 | Unicode version | ||
| Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| mulgass3.b |
|
| mulgass3.m |
|
| mulgass3.t |
|
| Ref | Expression |
|---|---|
| mulgass3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . . . . 6
| |
| 2 | 1 | opprring 13812 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | simpr1 1005 |
. . . 4
| |
| 5 | simpr3 1007 |
. . . . 5
| |
| 6 | mulgass3.b |
. . . . . . 7
| |
| 7 | 1, 6 | opprbasg 13808 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | 5, 8 | eleqtrd 2283 |
. . . 4
|
| 10 | simpr2 1006 |
. . . . 5
| |
| 11 | 10, 8 | eleqtrd 2283 |
. . . 4
|
| 12 | eqid 2204 |
. . . . 5
| |
| 13 | eqid 2204 |
. . . . 5
| |
| 14 | eqid 2204 |
. . . . 5
| |
| 15 | 12, 13, 14 | mulgass2 13791 |
. . . 4
|
| 16 | 3, 4, 9, 11, 15 | syl13anc 1251 |
. . 3
|
| 17 | simpl 109 |
. . . 4
| |
| 18 | 3 | ringgrpd 13738 |
. . . . . 6
|
| 19 | 12, 13, 18, 4, 9 | mulgcld 13451 |
. . . . 5
|
| 20 | 19, 8 | eleqtrrd 2284 |
. . . 4
|
| 21 | mulgass3.t |
. . . . 5
| |
| 22 | 6, 21, 1, 14 | opprmulg 13804 |
. . . 4
|
| 23 | 17, 20, 10, 22 | syl3anc 1249 |
. . 3
|
| 24 | 6, 21, 1, 14 | opprmulg 13804 |
. . . . 5
|
| 25 | 17, 5, 10, 24 | syl3anc 1249 |
. . . 4
|
| 26 | 25 | oveq2d 5959 |
. . 3
|
| 27 | 16, 23, 26 | 3eqtr3d 2245 |
. 2
|
| 28 | mulgass3.m |
. . . . . 6
| |
| 29 | 28 | a1i 9 |
. . . . 5
|
| 30 | eqidd 2205 |
. . . . 5
| |
| 31 | 6 | a1i 9 |
. . . . 5
|
| 32 | ssidd 3213 |
. . . . 5
| |
| 33 | eqid 2204 |
. . . . . . . 8
| |
| 34 | 6, 33 | ringacl 13763 |
. . . . . . 7
|
| 35 | 34 | 3expb 1206 |
. . . . . 6
|
| 36 | 35 | adantlr 477 |
. . . . 5
|
| 37 | 1, 33 | oppraddg 13809 |
. . . . . . 7
|
| 38 | 37 | oveqdr 5971 |
. . . . . 6
|
| 39 | 38 | adantr 276 |
. . . . 5
|
| 40 | 29, 30, 17, 3, 31, 8, 32, 36, 39 | mulgpropdg 13471 |
. . . 4
|
| 41 | 40 | oveqd 5960 |
. . 3
|
| 42 | 41 | oveq2d 5959 |
. 2
|
| 43 | 40 | oveqd 5960 |
. 2
|
| 44 | 27, 42, 43 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-tpos 6330 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-seqfrec 10591 df-ndx 12806 df-slot 12807 df-base 12809 df-sets 12810 df-plusg 12893 df-mulr 12894 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-mulg 13427 df-mgp 13654 df-ur 13693 df-ring 13731 df-oppr 13801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |