ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass3 Unicode version

Theorem mulgass3 13818
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b  |-  B  =  ( Base `  R
)
mulgass3.m  |-  .x.  =  (.g
`  R )
mulgass3.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13812 . . . . 5  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
32adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Ring )
4 simpr1 1005 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  N  e.  ZZ )
5 simpr3 1007 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
6 mulgass3.b . . . . . . 7  |-  B  =  ( Base `  R
)
71, 6opprbasg 13808 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
87adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  (oppr
`  R ) ) )
95, 8eleqtrd 2283 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  ( Base `  (oppr
`  R ) ) )
10 simpr2 1006 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
1110, 8eleqtrd 2283 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  ( Base `  (oppr
`  R ) ) )
12 eqid 2204 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
13 eqid 2204 . . . . 5  |-  (.g `  (oppr `  R
) )  =  (.g `  (oppr
`  R ) )
14 eqid 2204 . . . . 5  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1512, 13, 14mulgass2 13791 . . . 4  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N  e.  ZZ  /\  Y  e.  ( Base `  (oppr `  R
) )  /\  X  e.  ( Base `  (oppr `  R
) ) ) )  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
163, 4, 9, 11, 15syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
17 simpl 109 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  R  e.  Ring )
183ringgrpd 13738 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Grp )
1912, 13, 18, 4, 9mulgcld 13451 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  ( Base `  (oppr `  R
) ) )
2019, 8eleqtrrd 2284 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) Y )  e.  B )
21 mulgass3.t . . . . 5  |-  .X.  =  ( .r `  R )
226, 21, 1, 14opprmulg 13804 . . . 4  |-  ( ( R  e.  Ring  /\  ( N (.g `  (oppr
`  R ) ) Y )  e.  B  /\  X  e.  B
)  ->  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
2317, 20, 10, 22syl3anc 1249 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) ) )
246, 21, 1, 14opprmulg 13804 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.X.  Y ) )
2517, 5, 10, 24syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( Y ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  Y )
)
2625oveq2d 5959 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N (.g `  (oppr `  R
) ) ( Y ( .r `  (oppr `  R
) ) X ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
2716, 23, 263eqtr3d 2245 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) )  =  ( N (.g `  (oppr `  R
) ) ( X 
.X.  Y ) ) )
28 mulgass3.m . . . . . 6  |-  .x.  =  (.g
`  R )
2928a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  R ) )
30 eqidd 2205 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(.g `  (oppr
`  R ) )  =  (.g `  (oppr
`  R ) ) )
316a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  R ) )
32 ssidd 3213 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  C_  B )
33 eqid 2204 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
346, 33ringacl 13763 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  R
) y )  e.  B )
35343expb 1206 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  R ) y )  e.  B
)
3635adantlr 477 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  e.  B )
371, 33oppraddg 13809 . . . . . . 7  |-  ( R  e.  Ring  ->  ( +g  `  R )  =  ( +g  `  (oppr `  R
) ) )
3837oveqdr 5971 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
3938adantr 276 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
4029, 30, 17, 3, 31, 8, 32, 36, 39mulgpropdg 13471 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  (oppr
`  R ) ) )
4140oveqd 5960 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  Y
)  =  ( N (.g `  (oppr
`  R ) ) Y ) )
4241oveq2d 5959 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) ) )
4340oveqd 5960 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  ( X  .X.  Y ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
4427, 42, 433eqtr4d 2247 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   ZZcz 9371   Basecbs 12803   +g cplusg 12880   .rcmulr 12881  .gcmg 13426   Ringcrg 13729  opprcoppr 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-3 9095  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-seqfrec 10591  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-mulg 13427  df-mgp 13654  df-ur 13693  df-ring 13731  df-oppr 13801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator