ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqrspc2v Unicode version

Theorem oveqrspc2v 6028
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
oveqrspc2v.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x F y )  =  ( x G y ) )
Assertion
Ref Expression
oveqrspc2v  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  B ) )  -> 
( X F Y )  =  ( X G Y ) )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y    ph, x, y   
y, Y    x, G, y    x, X, y
Allowed substitution hint:    Y( x)

Proof of Theorem oveqrspc2v
StepHypRef Expression
1 oveqrspc2v.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x F y )  =  ( x G y ) )
21ralrimivva 2612 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y ) )
3 oveq1 6008 . . . 4  |-  ( x  =  X  ->  (
x F y )  =  ( X F y ) )
4 oveq1 6008 . . . 4  |-  ( x  =  X  ->  (
x G y )  =  ( X G y ) )
53, 4eqeq12d 2244 . . 3  |-  ( x  =  X  ->  (
( x F y )  =  ( x G y )  <->  ( X F y )  =  ( X G y ) ) )
6 oveq2 6009 . . . 4  |-  ( y  =  Y  ->  ( X F y )  =  ( X F Y ) )
7 oveq2 6009 . . . 4  |-  ( y  =  Y  ->  ( X G y )  =  ( X G Y ) )
86, 7eqeq12d 2244 . . 3  |-  ( y  =  Y  ->  (
( X F y )  =  ( X G y )  <->  ( X F Y )  =  ( X G Y ) ) )
95, 8rspc2v 2920 . 2  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( x F y )  =  ( x G y )  ->  ( X F Y )  =  ( X G Y ) ) )
102, 9mpan9 281 1  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  B ) )  -> 
( X F Y )  =  ( X G Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  grpidpropdg  13407  sgrppropd  13446  mndpropd  13473  grpsubpropd2  13638  cmnpropd  13832  rngpropd  13918  ringpropd  14001  lmodprop2d  14312  lsspropdg  14395
  Copyright terms: Public domain W3C validator