| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqrspc2v | Unicode version | ||
| Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| oveqrspc2v.1 |
|
| Ref | Expression |
|---|---|
| oveqrspc2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqrspc2v.1 |
. . 3
| |
| 2 | 1 | ralrimivva 2579 |
. 2
|
| 3 | oveq1 5932 |
. . . 4
| |
| 4 | oveq1 5932 |
. . . 4
| |
| 5 | 3, 4 | eqeq12d 2211 |
. . 3
|
| 6 | oveq2 5933 |
. . . 4
| |
| 7 | oveq2 5933 |
. . . 4
| |
| 8 | 6, 7 | eqeq12d 2211 |
. . 3
|
| 9 | 5, 8 | rspc2v 2881 |
. 2
|
| 10 | 2, 9 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: grpidpropdg 13076 sgrppropd 13115 mndpropd 13142 grpsubpropd2 13307 cmnpropd 13501 rngpropd 13587 ringpropd 13670 lmodprop2d 13980 lsspropdg 14063 |
| Copyright terms: Public domain | W3C validator |