| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oveqrspc2v | Unicode version | ||
| Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| oveqrspc2v.1 | 
 | 
| Ref | Expression | 
|---|---|
| oveqrspc2v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveqrspc2v.1 | 
. . 3
 | |
| 2 | 1 | ralrimivva 2579 | 
. 2
 | 
| 3 | oveq1 5929 | 
. . . 4
 | |
| 4 | oveq1 5929 | 
. . . 4
 | |
| 5 | 3, 4 | eqeq12d 2211 | 
. . 3
 | 
| 6 | oveq2 5930 | 
. . . 4
 | |
| 7 | oveq2 5930 | 
. . . 4
 | |
| 8 | 6, 7 | eqeq12d 2211 | 
. . 3
 | 
| 9 | 5, 8 | rspc2v 2881 | 
. 2
 | 
| 10 | 2, 9 | mpan9 281 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: grpidpropdg 13017 sgrppropd 13056 mndpropd 13081 grpsubpropd2 13237 cmnpropd 13425 rngpropd 13511 ringpropd 13594 lmodprop2d 13904 lsspropdg 13987 | 
| Copyright terms: Public domain | W3C validator |