ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1m GIF version

Theorem pw1m 7355
Description: A truth value which is inhabited is equal to true. This is a variation of pwntru 4251 and pwtrufal 16075. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1m ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥𝐴) → 𝐴 = 1o)
Distinct variable group:   𝑥,𝐴

Proof of Theorem pw1m
StepHypRef Expression
1 elpwi 3630 . . . . . . . 8 (𝐴 ∈ 𝒫 1o𝐴 ⊆ 1o)
2 df1o2 6528 . . . . . . . 8 1o = {∅}
31, 2sseqtrdi 3245 . . . . . . 7 (𝐴 ∈ 𝒫 1o𝐴 ⊆ {∅})
43adantr 276 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 ⊆ {∅})
51sselda 3197 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ 1o)
65, 2eleqtrdi 2299 . . . . . . . . 9 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ {∅})
7 elsni 3656 . . . . . . . . 9 (𝑥 ∈ {∅} → 𝑥 = ∅)
86, 7syl 14 . . . . . . . 8 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 = ∅)
9 simpr 110 . . . . . . . 8 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥𝐴)
108, 9eqeltrrd 2284 . . . . . . 7 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → ∅ ∈ 𝐴)
1110snssd 3784 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → {∅} ⊆ 𝐴)
124, 11eqssd 3214 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = {∅})
1312, 2eqtr4di 2257 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = 1o)
1413ex 115 . . 3 (𝐴 ∈ 𝒫 1o → (𝑥𝐴𝐴 = 1o))
1514exlimdv 1843 . 2 (𝐴 ∈ 𝒫 1o → (∃𝑥 𝑥𝐴𝐴 = 1o))
1615imp 124 1 ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥𝐴) → 𝐴 = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wss 3170  c0 3464  𝒫 cpw 3621  {csn 3638  1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-suc 4426  df-1o 6515
This theorem is referenced by:  pw1if  7356
  Copyright terms: Public domain W3C validator