ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1m GIF version

Theorem pw1m 7405
Description: A truth value which is inhabited is equal to true. This is a variation of pwntru 4282 and pwtrufal 16322. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1m ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥𝐴) → 𝐴 = 1o)
Distinct variable group:   𝑥,𝐴

Proof of Theorem pw1m
StepHypRef Expression
1 elpwi 3658 . . . . . . . 8 (𝐴 ∈ 𝒫 1o𝐴 ⊆ 1o)
2 df1o2 6573 . . . . . . . 8 1o = {∅}
31, 2sseqtrdi 3272 . . . . . . 7 (𝐴 ∈ 𝒫 1o𝐴 ⊆ {∅})
43adantr 276 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 ⊆ {∅})
51sselda 3224 . . . . . . . . . 10 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ 1o)
65, 2eleqtrdi 2322 . . . . . . . . 9 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 ∈ {∅})
7 elsni 3684 . . . . . . . . 9 (𝑥 ∈ {∅} → 𝑥 = ∅)
86, 7syl 14 . . . . . . . 8 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥 = ∅)
9 simpr 110 . . . . . . . 8 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝑥𝐴)
108, 9eqeltrrd 2307 . . . . . . 7 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → ∅ ∈ 𝐴)
1110snssd 3812 . . . . . 6 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → {∅} ⊆ 𝐴)
124, 11eqssd 3241 . . . . 5 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = {∅})
1312, 2eqtr4di 2280 . . . 4 ((𝐴 ∈ 𝒫 1o𝑥𝐴) → 𝐴 = 1o)
1413ex 115 . . 3 (𝐴 ∈ 𝒫 1o → (𝑥𝐴𝐴 = 1o))
1514exlimdv 1865 . 2 (𝐴 ∈ 𝒫 1o → (∃𝑥 𝑥𝐴𝐴 = 1o))
1615imp 124 1 ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥𝐴) → 𝐴 = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1if  7406
  Copyright terms: Public domain W3C validator