| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1m | GIF version | ||
| Description: A truth value which is inhabited is equal to true. This is a variation of pwntru 4251 and pwtrufal 16075. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| pw1m | ⊢ ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 3630 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝒫 1o → 𝐴 ⊆ 1o) | |
| 2 | df1o2 6528 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 3 | 1, 2 | sseqtrdi 3245 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 1o → 𝐴 ⊆ {∅}) |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ {∅}) |
| 5 | 1 | sselda 3197 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 1o) |
| 6 | 5, 2 | eleqtrdi 2299 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {∅}) |
| 7 | elsni 3656 | . . . . . . . . 9 ⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) | |
| 8 | 6, 7 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝑥 = ∅) |
| 9 | simpr 110 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 10 | 8, 9 | eqeltrrd 2284 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → ∅ ∈ 𝐴) |
| 11 | 10 | snssd 3784 | . . . . . 6 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → {∅} ⊆ 𝐴) |
| 12 | 4, 11 | eqssd 3214 | . . . . 5 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝐴 = {∅}) |
| 13 | 12, 2 | eqtr4di 2257 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 1o ∧ 𝑥 ∈ 𝐴) → 𝐴 = 1o) |
| 14 | 13 | ex 115 | . . 3 ⊢ (𝐴 ∈ 𝒫 1o → (𝑥 ∈ 𝐴 → 𝐴 = 1o)) |
| 15 | 14 | exlimdv 1843 | . 2 ⊢ (𝐴 ∈ 𝒫 1o → (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 = 1o)) |
| 16 | 15 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 = 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 ∅c0 3464 𝒫 cpw 3621 {csn 3638 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: pw1if 7356 |
| Copyright terms: Public domain | W3C validator |