ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex Unicode version

Theorem lssex 14318
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )

Proof of Theorem lssex
Dummy variables  w  a  b  j  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13091 . . . . . 6  |-  Base  Fn  _V
2 vex 2802 . . . . . . 7  |-  w  e. 
_V
32a1i 9 . . . . . 6  |-  ( W  e.  V  ->  w  e.  _V )
4 funfvex 5644 . . . . . . 7  |-  ( ( Fun  Base  /\  w  e.  dom  Base )  ->  ( Base `  w )  e. 
_V )
54funfni 5423 . . . . . 6  |-  ( (
Base  Fn  _V  /\  w  e.  _V )  ->  ( Base `  w )  e. 
_V )
61, 3, 5sylancr 414 . . . . 5  |-  ( W  e.  V  ->  ( Base `  w )  e. 
_V )
76pwexd 4265 . . . 4  |-  ( W  e.  V  ->  ~P ( Base `  w )  e.  _V )
8 rabexg 4227 . . . 4  |-  ( ~P ( Base `  w
)  e.  _V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
97, 8syl 14 . . 3  |-  ( W  e.  V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V )
109alrimiv 1920 . 2  |-  ( W  e.  V  ->  A. w { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
11 df-lssm 14317 . . 3  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
1211mptfvex 5720 . 2  |-  ( ( A. w { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V  /\  W  e.  V
)  ->  ( LSubSp `  W )  e.  _V )
1310, 12mpancom 422 1  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393   E.wex 1538    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799   ~Pcpw 3649    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Scalarcsca 13113   .scvsca 13114   LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-lssm 14317
This theorem is referenced by:  lidlex  14437
  Copyright terms: Public domain W3C validator