ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex Unicode version

Theorem lssex 13850
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )

Proof of Theorem lssex
Dummy variables  w  a  b  j  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12676 . . . . . 6  |-  Base  Fn  _V
2 vex 2763 . . . . . . 7  |-  w  e. 
_V
32a1i 9 . . . . . 6  |-  ( W  e.  V  ->  w  e.  _V )
4 funfvex 5571 . . . . . . 7  |-  ( ( Fun  Base  /\  w  e.  dom  Base )  ->  ( Base `  w )  e. 
_V )
54funfni 5354 . . . . . 6  |-  ( (
Base  Fn  _V  /\  w  e.  _V )  ->  ( Base `  w )  e. 
_V )
61, 3, 5sylancr 414 . . . . 5  |-  ( W  e.  V  ->  ( Base `  w )  e. 
_V )
76pwexd 4210 . . . 4  |-  ( W  e.  V  ->  ~P ( Base `  w )  e.  _V )
8 rabexg 4172 . . . 4  |-  ( ~P ( Base `  w
)  e.  _V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
97, 8syl 14 . . 3  |-  ( W  e.  V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V )
109alrimiv 1885 . 2  |-  ( W  e.  V  ->  A. w { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
11 df-lssm 13849 . . 3  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
1211mptfvex 5643 . 2  |-  ( ( A. w { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V  /\  W  e.  V
)  ->  ( LSubSp `  W )  e.  _V )
1310, 12mpancom 422 1  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1503    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760   ~Pcpw 3601    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-lssm 13849
This theorem is referenced by:  lidlex  13969
  Copyright terms: Public domain W3C validator