ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssex Unicode version

Theorem lssex 14231
Description: Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
Assertion
Ref Expression
lssex  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )

Proof of Theorem lssex
Dummy variables  w  a  b  j  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13005 . . . . . 6  |-  Base  Fn  _V
2 vex 2779 . . . . . . 7  |-  w  e. 
_V
32a1i 9 . . . . . 6  |-  ( W  e.  V  ->  w  e.  _V )
4 funfvex 5616 . . . . . . 7  |-  ( ( Fun  Base  /\  w  e.  dom  Base )  ->  ( Base `  w )  e. 
_V )
54funfni 5395 . . . . . 6  |-  ( (
Base  Fn  _V  /\  w  e.  _V )  ->  ( Base `  w )  e. 
_V )
61, 3, 5sylancr 414 . . . . 5  |-  ( W  e.  V  ->  ( Base `  w )  e. 
_V )
76pwexd 4241 . . . 4  |-  ( W  e.  V  ->  ~P ( Base `  w )  e.  _V )
8 rabexg 4203 . . . 4  |-  ( ~P ( Base `  w
)  e.  _V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
97, 8syl 14 . . 3  |-  ( W  e.  V  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V )
109alrimiv 1898 . 2  |-  ( W  e.  V  ->  A. w { s  e.  ~P ( Base `  w )  |  ( E. j 
j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) }  e.  _V )
11 df-lssm 14230 . . 3  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
1211mptfvex 5688 . 2  |-  ( ( A. w { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  e.  _V  /\  W  e.  V
)  ->  ( LSubSp `  W )  e.  _V )
1310, 12mpancom 422 1  |-  ( W  e.  V  ->  ( LSubSp `
 W )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1516    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776   ~Pcpw 3626    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-lssm 14230
This theorem is referenced by:  lidlex  14350
  Copyright terms: Public domain W3C validator