ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexd GIF version

Theorem pwexd 4196
Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
pwexd.1 (𝜑𝐴𝑉)
Assertion
Ref Expression
pwexd (𝜑 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexd
StepHypRef Expression
1 pwexd.1 . 2 (𝜑𝐴𝑉)
2 pwexg 4195 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
31, 2syl 14 1 (𝜑 → 𝒫 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  Vcvv 2752  𝒫 cpw 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592
This theorem is referenced by:  fival  6987  tgvalex  12734  issubm  12890  issubg  13078  subgex  13081  issubrng  13507  issubrg  13529  lssex  13631  lsssetm  13633  lspfval  13665  lspex  13672  sraval  13714  toponsspwpwg  13919  cnpfval  14092  blfvalps  14282
  Copyright terms: Public domain W3C validator