ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpfval Unicode version

Theorem cnpfval 12378
Description: The function mapping the points in a topology  J to the set of all functions from  J to topology  K continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpfval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
Distinct variable groups:    w, f, x, K    f, X, w, x    f, Y, w, x    v, f, J, w, x
Allowed substitution hints:    K( v)    X( v)    Y( v)

Proof of Theorem cnpfval
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnp 12372 . . 3  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } ) )
21a1i 9 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  CnP  =  ( j  e.  Top , 
k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } ) ) )
3 simprl 520 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
43unieqd 3747 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
5 toponuni 12196 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65ad2antrr 479 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
74, 6eqtr4d 2175 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
8 simprr 521 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
98unieqd 3747 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  U. K )
10 toponuni 12196 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
1110ad2antlr 480 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  Y  =  U. K )
129, 11eqtr4d 2175 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  Y
)
1312, 7oveq12d 5792 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( U. k  ^m  U. j )  =  ( Y  ^m  X ) )
143rexeqdv 2633 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( E. v  e.  j  ( x  e.  v  /\  ( f
" v )  C_  w )  <->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) )
1514imbi2d 229 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( ( f `
 x )  e.  w  ->  E. v  e.  j  ( x  e.  v  /\  (
f " v ) 
C_  w ) )  <-> 
( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) ) )
168, 15raleqbidv 2638 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. w  e.  k  ( ( f `
 x )  e.  w  ->  E. v  e.  j  ( x  e.  v  /\  (
f " v ) 
C_  w ) )  <->  A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) ) )
1713, 16rabeqbidv 2681 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) }  =  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )
187, 17mpteq12dv 4010 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
19 topontop 12195 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2019adantr 274 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  Top )
21 topontop 12195 . . 3  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2221adantl 275 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  Top )
23 fnmap 6549 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
2423a1i 9 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ^m  Fn  ( _V  X.  _V ) )
25 toponmax 12206 . . . . . . . . 9  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2625elexd 2699 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
2726adantl 275 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Y  e.  _V )
28 toponmax 12206 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2928elexd 2699 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
3029adantr 274 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  _V )
31 fnovex 5804 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
3224, 27, 30, 31syl3anc 1216 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( Y  ^m  X )  e.  _V )
3332adantr 274 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  X )  ->  ( Y  ^m  X )  e. 
_V )
34 ssrab2 3182 . . . . . 6  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  C_  ( Y  ^m  X )
35 elpw2g 4081 . . . . . 6  |-  ( ( Y  ^m  X )  e.  _V  ->  ( { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  ~P ( Y  ^m  X )  <->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  C_  ( Y  ^m  X ) ) )
3634, 35mpbiri 167 . . . . 5  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  ~P ( Y  ^m  X ) )
3733, 36syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  X )  ->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  ~P ( Y  ^m  X ) )
3837fmpttd 5575 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) : X --> ~P ( Y  ^m  X ) )
3928adantr 274 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  J )
4032pwexd 4105 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ~P ( Y  ^m  X )  e. 
_V )
41 fex2 5291 . . 3  |-  ( ( ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) : X --> ~P ( Y  ^m  X
)  /\  X  e.  J  /\  ~P ( Y  ^m  X )  e. 
_V )  ->  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  e. 
_V )
4238, 39, 40, 41syl3anc 1216 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  e. 
_V )
432, 18, 20, 22, 42ovmpod 5898 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   ~Pcpw 3510   U.cuni 3736    |-> cmpt 3989    X. cxp 4537   "cima 4542    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776    ^m cmap 6542   Topctop 12178  TopOnctopon 12191    CnP ccnp 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12179  df-topon 12192  df-cnp 12372
This theorem is referenced by:  cnpval  12381
  Copyright terms: Public domain W3C validator