ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpfval Unicode version

Theorem cnpfval 14782
Description: The function mapping the points in a topology  J to the set of all functions from  J to topology  K continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpfval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
Distinct variable groups:    w, f, x, K    f, X, w, x    f, Y, w, x    v, f, J, w, x
Allowed substitution hints:    K( v)    X( v)    Y( v)

Proof of Theorem cnpfval
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnp 14776 . . 3  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } ) )
21a1i 9 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  CnP  =  ( j  e.  Top , 
k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } ) ) )
3 simprl 529 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
43unieqd 3875 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
5 toponuni 14602 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
65ad2antrr 488 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
74, 6eqtr4d 2243 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
8 simprr 531 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
98unieqd 3875 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  U. K )
10 toponuni 14602 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
1110ad2antlr 489 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  Y  =  U. K )
129, 11eqtr4d 2243 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  Y
)
1312, 7oveq12d 5985 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( U. k  ^m  U. j )  =  ( Y  ^m  X ) )
143rexeqdv 2712 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( E. v  e.  j  ( x  e.  v  /\  ( f
" v )  C_  w )  <->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) )
1514imbi2d 230 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( ( f `
 x )  e.  w  ->  E. v  e.  j  ( x  e.  v  /\  (
f " v ) 
C_  w ) )  <-> 
( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) ) )
168, 15raleqbidv 2721 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. w  e.  k  ( ( f `
 x )  e.  w  ->  E. v  e.  j  ( x  e.  v  /\  (
f " v ) 
C_  w ) )  <->  A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) ) )
1713, 16rabeqbidv 2771 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) }  =  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )
187, 17mpteq12dv 4142 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. w  e.  k  (
( f `  x
)  e.  w  ->  E. v  e.  j 
( x  e.  v  /\  ( f "
v )  C_  w
) ) } )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
19 topontop 14601 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2019adantr 276 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  Top )
21 topontop 14601 . . 3  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2221adantl 277 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  Top )
23 fnmap 6765 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
2423a1i 9 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ^m  Fn  ( _V  X.  _V ) )
25 toponmax 14612 . . . . . . . . 9  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2625elexd 2790 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
2726adantl 277 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Y  e.  _V )
28 toponmax 14612 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2928elexd 2790 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
3029adantr 276 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  _V )
31 fnovex 6000 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
3224, 27, 30, 31syl3anc 1250 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( Y  ^m  X )  e.  _V )
3332adantr 276 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  X )  ->  ( Y  ^m  X )  e. 
_V )
34 ssrab2 3286 . . . . . 6  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  C_  ( Y  ^m  X )
35 elpw2g 4216 . . . . . 6  |-  ( ( Y  ^m  X )  e.  _V  ->  ( { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  ~P ( Y  ^m  X )  <->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  C_  ( Y  ^m  X ) ) )
3634, 35mpbiri 168 . . . . 5  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  ~P ( Y  ^m  X ) )
3733, 36syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  X )  ->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  ~P ( Y  ^m  X ) )
3837fmpttd 5758 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) : X --> ~P ( Y  ^m  X ) )
3928adantr 276 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  J )
4032pwexd 4241 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ~P ( Y  ^m  X )  e. 
_V )
41 fex2 5464 . . 3  |-  ( ( ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) : X --> ~P ( Y  ^m  X
)  /\  X  e.  J  /\  ~P ( Y  ^m  X )  e. 
_V )  ->  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  e. 
_V )
4238, 39, 40, 41syl3anc 1250 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  e. 
_V )
432, 18, 20, 22, 42ovmpod 6096 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   U.cuni 3864    |-> cmpt 4121    X. cxp 4691   "cima 4696    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    e. cmpo 5969    ^m cmap 6758   Topctop 14584  TopOnctopon 14597    CnP ccnp 14773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cnp 14776
This theorem is referenced by:  cnpval  14785
  Copyright terms: Public domain W3C validator