| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnpfval | Unicode version | ||
| Description: The function mapping the
points in a topology |
| Ref | Expression |
|---|---|
| cnpfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnp 14776 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simprl 529 |
. . . . 5
| |
| 4 | 3 | unieqd 3875 |
. . . 4
|
| 5 | toponuni 14602 |
. . . . 5
| |
| 6 | 5 | ad2antrr 488 |
. . . 4
|
| 7 | 4, 6 | eqtr4d 2243 |
. . 3
|
| 8 | simprr 531 |
. . . . . . 7
| |
| 9 | 8 | unieqd 3875 |
. . . . . 6
|
| 10 | toponuni 14602 |
. . . . . . 7
| |
| 11 | 10 | ad2antlr 489 |
. . . . . 6
|
| 12 | 9, 11 | eqtr4d 2243 |
. . . . 5
|
| 13 | 12, 7 | oveq12d 5985 |
. . . 4
|
| 14 | 3 | rexeqdv 2712 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | 8, 15 | raleqbidv 2721 |
. . . 4
|
| 17 | 13, 16 | rabeqbidv 2771 |
. . 3
|
| 18 | 7, 17 | mpteq12dv 4142 |
. 2
|
| 19 | topontop 14601 |
. . 3
| |
| 20 | 19 | adantr 276 |
. 2
|
| 21 | topontop 14601 |
. . 3
| |
| 22 | 21 | adantl 277 |
. 2
|
| 23 | fnmap 6765 |
. . . . . . . 8
| |
| 24 | 23 | a1i 9 |
. . . . . . 7
|
| 25 | toponmax 14612 |
. . . . . . . . 9
| |
| 26 | 25 | elexd 2790 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | toponmax 14612 |
. . . . . . . . 9
| |
| 29 | 28 | elexd 2790 |
. . . . . . . 8
|
| 30 | 29 | adantr 276 |
. . . . . . 7
|
| 31 | fnovex 6000 |
. . . . . . 7
| |
| 32 | 24, 27, 30, 31 | syl3anc 1250 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | ssrab2 3286 |
. . . . . 6
| |
| 35 | elpw2g 4216 |
. . . . . 6
| |
| 36 | 34, 35 | mpbiri 168 |
. . . . 5
|
| 37 | 33, 36 | syl 14 |
. . . 4
|
| 38 | 37 | fmpttd 5758 |
. . 3
|
| 39 | 28 | adantr 276 |
. . 3
|
| 40 | 32 | pwexd 4241 |
. . 3
|
| 41 | fex2 5464 |
. . 3
| |
| 42 | 38, 39, 40, 41 | syl3anc 1250 |
. 2
|
| 43 | 2, 18, 20, 22, 42 | ovmpod 6096 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-top 14585 df-topon 14598 df-cnp 14776 |
| This theorem is referenced by: cnpval 14785 |
| Copyright terms: Public domain | W3C validator |