ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval Unicode version

Theorem sraval 14314
Description: Lemma for srabaseg 14316 through sravscag 14320. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)

Proof of Theorem sraval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2788 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
21adantr 276 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  _V )
3 df-sra 14312 . . . 4  |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
) )
4 fveq2 5599 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
54pweqd 3631 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
6 id 19 . . . . . . . 8  |-  ( w  =  W  ->  w  =  W )
7 oveq1 5974 . . . . . . . . 9  |-  ( w  =  W  ->  (
ws  s )  =  ( Ws  s ) )
87opeq2d 3840 . . . . . . . 8  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  s ) >. )
96, 8oveq12d 5985 . . . . . . 7  |-  ( w  =  W  ->  (
w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) )
10 fveq2 5599 . . . . . . . 8  |-  ( w  =  W  ->  ( .r `  w )  =  ( .r `  W
) )
1110opeq2d 3840 . . . . . . 7  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( .r `  w
) >.  =  <. ( .s `  ndx ) ,  ( .r `  W
) >. )
129, 11oveq12d 5985 . . . . . 6  |-  ( w  =  W  ->  (
( w sSet  <. (Scalar ` 
ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) )
1310opeq2d 3840 . . . . . 6  |-  ( w  =  W  ->  <. ( .i `  ndx ) ,  ( .r `  w
) >.  =  <. ( .i `  ndx ) ,  ( .r `  W
) >. )
1412, 13oveq12d 5985 . . . . 5  |-  ( w  =  W  ->  (
( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
155, 14mpteq12dv 4142 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
)  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
16 elex 2788 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
17 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
18 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1918funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2017, 19mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
2120pwexd 4241 . . . . 5  |-  ( W  e.  _V  ->  ~P ( Base `  W )  e.  _V )
2221mptexd 5834 . . . 4  |-  ( W  e.  _V  ->  (
s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)  e.  _V )
233, 15, 16, 22fvmptd3 5696 . . 3  |-  ( W  e.  _V  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
242, 23syl 14 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
25 simpr 110 . . . . . . 7  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  s  =  S )
2625oveq2d 5983 . . . . . 6  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( Ws  s )  =  ( Ws  S ) )
2726opeq2d 3840 . . . . 5  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  -> 
<. (Scalar `  ndx ) ,  ( Ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )
2827oveq2d 5983 . . . 4  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)
2928oveq1d 5982 . . 3  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
3029oveq1d 5982 . 2  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) sSet  <. ( .i `  ndx ) ,  ( .r
`  W ) >.
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
31 simpr 110 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  C_  ( Base `  W
) )
32 elpw2g 4216 . . . 4  |-  ( (
Base `  W )  e.  _V  ->  ( S  e.  ~P ( Base `  W
)  <->  S  C_  ( Base `  W ) ) )
332, 20, 323syl 17 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( S  e.  ~P ( Base `  W )  <->  S  C_  ( Base `  W ) ) )
3431, 33mpbird 167 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  ~P ( Base `  W
) )
35 simpl 109 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  V )
36 scaslid 13100 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3736simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
3837a1i 9 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (Scalar ` 
ndx )  e.  NN )
3934elexd 2790 . . . . . 6  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  _V )
40 ressex 13012 . . . . . 6  |-  ( ( W  e.  V  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
4139, 40syldan 282 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( Ws  S )  e.  _V )
42 setsex 12979 . . . . 5  |-  ( ( W  e.  V  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
4335, 38, 41, 42syl3anc 1250 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )  e.  _V )
44 vscaslid 13110 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
4544simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
4645a1i 9 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .s `  ndx )  e.  NN )
47 mulrslid 13079 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4847slotex 12974 . . . . 5  |-  ( W  e.  V  ->  ( .r `  W )  e. 
_V )
4948adantr 276 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .r `  W )  e. 
_V )
50 setsex 12979 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5143, 46, 49, 50syl3anc 1250 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. )  e.  _V )
52 ipslid 13118 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
5352simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
5453a1i 9 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .i `  ndx )  e.  NN )
55 setsex 12979 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .i
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5651, 54, 49, 55syl3anc 1250 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5724, 30, 34, 56fvmptd 5683 1  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626   <.cop 3646    |-> cmpt 4121    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   NNcn 9071   ndxcnx 12944   sSet csts 12945  Slot cslot 12946   Basecbs 12947   ↾s cress 12948   .rcmulr 13025  Scalarcsca 13027   .scvsca 13028   .icip 13029  subringAlg csra 14310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-mulr 13038  df-sca 13040  df-vsca 13041  df-ip 13042  df-sra 14312
This theorem is referenced by:  sralemg  14315  srascag  14319  sravscag  14320  sraipg  14321  sraex  14323
  Copyright terms: Public domain W3C validator