ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval Unicode version

Theorem sraval 14170
Description: Lemma for srabaseg 14172 through sravscag 14176. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)

Proof of Theorem sraval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2782 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
21adantr 276 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  _V )
3 df-sra 14168 . . . 4  |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
) )
4 fveq2 5575 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
54pweqd 3620 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
6 id 19 . . . . . . . 8  |-  ( w  =  W  ->  w  =  W )
7 oveq1 5950 . . . . . . . . 9  |-  ( w  =  W  ->  (
ws  s )  =  ( Ws  s ) )
87opeq2d 3825 . . . . . . . 8  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  s ) >. )
96, 8oveq12d 5961 . . . . . . 7  |-  ( w  =  W  ->  (
w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) )
10 fveq2 5575 . . . . . . . 8  |-  ( w  =  W  ->  ( .r `  w )  =  ( .r `  W
) )
1110opeq2d 3825 . . . . . . 7  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( .r `  w
) >.  =  <. ( .s `  ndx ) ,  ( .r `  W
) >. )
129, 11oveq12d 5961 . . . . . 6  |-  ( w  =  W  ->  (
( w sSet  <. (Scalar ` 
ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) )
1310opeq2d 3825 . . . . . 6  |-  ( w  =  W  ->  <. ( .i `  ndx ) ,  ( .r `  w
) >.  =  <. ( .i `  ndx ) ,  ( .r `  W
) >. )
1412, 13oveq12d 5961 . . . . 5  |-  ( w  =  W  ->  (
( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
155, 14mpteq12dv 4125 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
)  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
16 elex 2782 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
17 basfn 12861 . . . . . . 7  |-  Base  Fn  _V
18 funfvex 5592 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1918funfni 5375 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2017, 19mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
2120pwexd 4224 . . . . 5  |-  ( W  e.  _V  ->  ~P ( Base `  W )  e.  _V )
2221mptexd 5810 . . . 4  |-  ( W  e.  _V  ->  (
s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)  e.  _V )
233, 15, 16, 22fvmptd3 5672 . . 3  |-  ( W  e.  _V  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
242, 23syl 14 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
25 simpr 110 . . . . . . 7  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  s  =  S )
2625oveq2d 5959 . . . . . 6  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( Ws  s )  =  ( Ws  S ) )
2726opeq2d 3825 . . . . 5  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  -> 
<. (Scalar `  ndx ) ,  ( Ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )
2827oveq2d 5959 . . . 4  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)
2928oveq1d 5958 . . 3  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
3029oveq1d 5958 . 2  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) sSet  <. ( .i `  ndx ) ,  ( .r
`  W ) >.
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
31 simpr 110 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  C_  ( Base `  W
) )
32 elpw2g 4199 . . . 4  |-  ( (
Base `  W )  e.  _V  ->  ( S  e.  ~P ( Base `  W
)  <->  S  C_  ( Base `  W ) ) )
332, 20, 323syl 17 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( S  e.  ~P ( Base `  W )  <->  S  C_  ( Base `  W ) ) )
3431, 33mpbird 167 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  ~P ( Base `  W
) )
35 simpl 109 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  V )
36 scaslid 12956 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3736simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
3837a1i 9 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (Scalar ` 
ndx )  e.  NN )
3934elexd 2784 . . . . . 6  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  _V )
40 ressex 12868 . . . . . 6  |-  ( ( W  e.  V  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
4139, 40syldan 282 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( Ws  S )  e.  _V )
42 setsex 12835 . . . . 5  |-  ( ( W  e.  V  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
4335, 38, 41, 42syl3anc 1249 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )  e.  _V )
44 vscaslid 12966 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
4544simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
4645a1i 9 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .s `  ndx )  e.  NN )
47 mulrslid 12935 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4847slotex 12830 . . . . 5  |-  ( W  e.  V  ->  ( .r `  W )  e. 
_V )
4948adantr 276 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .r `  W )  e. 
_V )
50 setsex 12835 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5143, 46, 49, 50syl3anc 1249 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. )  e.  _V )
52 ipslid 12974 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
5352simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
5453a1i 9 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .i `  ndx )  e.  NN )
55 setsex 12835 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .i
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5651, 54, 49, 55syl3anc 1249 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5724, 30, 34, 56fvmptd 5659 1  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   ~Pcpw 3615   <.cop 3635    |-> cmpt 4104    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   NNcn 9035   ndxcnx 12800   sSet csts 12801  Slot cslot 12802   Basecbs 12803   ↾s cress 12804   .rcmulr 12881  Scalarcsca 12883   .scvsca 12884   .icip 12885  subringAlg csra 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-mulr 12894  df-sca 12896  df-vsca 12897  df-ip 12898  df-sra 14168
This theorem is referenced by:  sralemg  14171  srascag  14175  sravscag  14176  sraipg  14177  sraex  14179
  Copyright terms: Public domain W3C validator