ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval Unicode version

Theorem sraval 13933
Description: Lemma for srabaseg 13935 through sravscag 13939. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)

Proof of Theorem sraval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
21adantr 276 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  _V )
3 df-sra 13931 . . . 4  |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
) )
4 fveq2 5554 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
54pweqd 3606 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
6 id 19 . . . . . . . 8  |-  ( w  =  W  ->  w  =  W )
7 oveq1 5925 . . . . . . . . 9  |-  ( w  =  W  ->  (
ws  s )  =  ( Ws  s ) )
87opeq2d 3811 . . . . . . . 8  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  s ) >. )
96, 8oveq12d 5936 . . . . . . 7  |-  ( w  =  W  ->  (
w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) )
10 fveq2 5554 . . . . . . . 8  |-  ( w  =  W  ->  ( .r `  w )  =  ( .r `  W
) )
1110opeq2d 3811 . . . . . . 7  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( .r `  w
) >.  =  <. ( .s `  ndx ) ,  ( .r `  W
) >. )
129, 11oveq12d 5936 . . . . . 6  |-  ( w  =  W  ->  (
( w sSet  <. (Scalar ` 
ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) )
1310opeq2d 3811 . . . . . 6  |-  ( w  =  W  ->  <. ( .i `  ndx ) ,  ( .r `  w
) >.  =  <. ( .i `  ndx ) ,  ( .r `  W
) >. )
1412, 13oveq12d 5936 . . . . 5  |-  ( w  =  W  ->  (
( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
155, 14mpteq12dv 4111 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
)  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
16 elex 2771 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
17 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
18 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1918funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2017, 19mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
2120pwexd 4210 . . . . 5  |-  ( W  e.  _V  ->  ~P ( Base `  W )  e.  _V )
2221mptexd 5785 . . . 4  |-  ( W  e.  _V  ->  (
s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)  e.  _V )
233, 15, 16, 22fvmptd3 5651 . . 3  |-  ( W  e.  _V  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
242, 23syl 14 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
25 simpr 110 . . . . . . 7  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  s  =  S )
2625oveq2d 5934 . . . . . 6  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( Ws  s )  =  ( Ws  S ) )
2726opeq2d 3811 . . . . 5  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  -> 
<. (Scalar `  ndx ) ,  ( Ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )
2827oveq2d 5934 . . . 4  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)
2928oveq1d 5933 . . 3  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
3029oveq1d 5933 . 2  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) sSet  <. ( .i `  ndx ) ,  ( .r
`  W ) >.
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
31 simpr 110 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  C_  ( Base `  W
) )
32 elpw2g 4185 . . . 4  |-  ( (
Base `  W )  e.  _V  ->  ( S  e.  ~P ( Base `  W
)  <->  S  C_  ( Base `  W ) ) )
332, 20, 323syl 17 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( S  e.  ~P ( Base `  W )  <->  S  C_  ( Base `  W ) ) )
3431, 33mpbird 167 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  ~P ( Base `  W
) )
35 simpl 109 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  V )
36 scaslid 12770 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3736simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
3837a1i 9 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (Scalar ` 
ndx )  e.  NN )
3934elexd 2773 . . . . . 6  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  _V )
40 ressex 12683 . . . . . 6  |-  ( ( W  e.  V  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
4139, 40syldan 282 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( Ws  S )  e.  _V )
42 setsex 12650 . . . . 5  |-  ( ( W  e.  V  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
4335, 38, 41, 42syl3anc 1249 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )  e.  _V )
44 vscaslid 12780 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
4544simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
4645a1i 9 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .s `  ndx )  e.  NN )
47 mulrslid 12749 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4847slotex 12645 . . . . 5  |-  ( W  e.  V  ->  ( .r `  W )  e. 
_V )
4948adantr 276 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .r `  W )  e. 
_V )
50 setsex 12650 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5143, 46, 49, 50syl3anc 1249 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. )  e.  _V )
52 ipslid 12788 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
5352simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
5453a1i 9 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .i `  ndx )  e.  NN )
55 setsex 12650 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .i
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5651, 54, 49, 55syl3anc 1249 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5724, 30, 34, 56fvmptd 5638 1  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   <.cop 3621    |-> cmpt 4090    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   NNcn 8982   ndxcnx 12615   sSet csts 12616  Slot cslot 12617   Basecbs 12618   ↾s cress 12619   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699   .icip 12700  subringAlg csra 13929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-sra 13931
This theorem is referenced by:  sralemg  13934  srascag  13938  sravscag  13939  sraipg  13940  sraex  13942
  Copyright terms: Public domain W3C validator