Step | Hyp | Ref
| Expression |
1 | | elex 2760 |
. . . 4
   |
2 | 1 | adantr 276 |
. . 3
         |
3 | | df-sra 13681 |
. . . 4
subringAlg           sSet  Scalar    ↾s    sSet      
      sSet      
         |
4 | | fveq2 5527 |
. . . . . 6
           |
5 | 4 | pweqd 3592 |
. . . . 5
             |
6 | | id 19 |
. . . . . . . 8
   |
7 | | oveq1 5895 |
. . . . . . . . 9
  ↾s   ↾s    |
8 | 7 | opeq2d 3797 |
. . . . . . . 8
  Scalar    ↾s    Scalar    ↾s     |
9 | 6, 8 | oveq12d 5906 |
. . . . . . 7
  sSet  Scalar  
 ↾s     sSet  Scalar  
 ↾s      |
10 | | fveq2 5527 |
. . . . . . . 8
           |
11 | 10 | opeq2d 3797 |
. . . . . . 7
                         |
12 | 9, 11 | oveq12d 5906 |
. . . . . 6
   sSet  Scalar    ↾s    sSet      
        sSet  Scalar   
↾s    sSet               |
13 | 10 | opeq2d 3797 |
. . . . . 6
                         |
14 | 12, 13 | oveq12d 5906 |
. . . . 5
    sSet  Scalar    ↾s    sSet      
      sSet      
         sSet  Scalar  
 ↾s    sSet             sSet               |
15 | 5, 14 | mpteq12dv 4097 |
. . . 4
          sSet  Scalar    ↾s    sSet      
      sSet      
                sSet  Scalar    ↾s    sSet      
      sSet      
         |
16 | | elex 2760 |
. . . 4
   |
17 | | basfn 12534 |
. . . . . . 7
 |
18 | | funfvex 5544 |
. . . . . . . 8
 
       |
19 | 18 | funfni 5328 |
. . . . . . 7
 
       |
20 | 17, 19 | mpan 424 |
. . . . . 6
       |
21 | 20 | pwexd 4193 |
. . . . 5
        |
22 | 21 | mptexd 5756 |
. . . 4
          sSet  Scalar    ↾s    sSet      
      sSet      
         |
23 | 3, 15, 16, 22 | fvmptd3 5622 |
. . 3
 subringAlg            sSet  Scalar    ↾s    sSet      
      sSet      
         |
24 | 2, 23 | syl 14 |
. 2
       subringAlg            sSet  Scalar    ↾s    sSet      
      sSet      
         |
25 | | simpr 110 |
. . . . . . 7
  
    
   |
26 | 25 | oveq2d 5904 |
. . . . . 6
  
    
 
↾s  
↾s    |
27 | 26 | opeq2d 3797 |
. . . . 5
  
    
  Scalar   
↾s    Scalar  
 ↾s     |
28 | 27 | oveq2d 5904 |
. . . 4
  
    
  sSet  Scalar    ↾s     sSet  Scalar    ↾s      |
29 | 28 | oveq1d 5903 |
. . 3
  
    
   sSet  Scalar    ↾s    sSet      
        sSet  Scalar   
↾s    sSet      
        |
30 | 29 | oveq1d 5903 |
. 2
  
    
    sSet  Scalar   
↾s    sSet             sSet                sSet  Scalar    ↾s    sSet      
      sSet      
        |
31 | | simpr 110 |
. . 3
             |
32 | | elpw2g 4168 |
. . . 4
    
     
       |
33 | 2, 20, 32 | 3syl 17 |
. . 3
       
    
       |
34 | 31, 33 | mpbird 167 |
. 2
              |
35 | | simpl 109 |
. . . . 5
         |
36 | | scaslid 12626 |
. . . . . . 7
Scalar Slot Scalar  Scalar    |
37 | 36 | simpri 113 |
. . . . . 6
Scalar 
 |
38 | 37 | a1i 9 |
. . . . 5
       Scalar    |
39 | 34 | elexd 2762 |
. . . . . 6
         |
40 | | ressex 12539 |
. . . . . 6
 
 
↾s    |
41 | 39, 40 | syldan 282 |
. . . . 5
        ↾s    |
42 | | setsex 12508 |
. . . . 5
  Scalar   ↾s    sSet  Scalar    ↾s      |
43 | 35, 38, 41, 42 | syl3anc 1248 |
. . . 4
        sSet  Scalar  
 ↾s      |
44 | | vscaslid 12636 |
. . . . . 6
 Slot    
      |
45 | 44 | simpri 113 |
. . . . 5
     |
46 | 45 | a1i 9 |
. . . 4
             |
47 | | mulrslid 12605 |
. . . . . 6
 Slot    
      |
48 | 47 | slotex 12503 |
. . . . 5
       |
49 | 48 | adantr 276 |
. . . 4
             |
50 | | setsex 12508 |
. . . 4
   sSet  Scalar    ↾s               sSet  Scalar    ↾s    sSet      
        |
51 | 43, 46, 49, 50 | syl3anc 1248 |
. . 3
         sSet
 Scalar    ↾s    sSet               |
52 | | ipslid 12644 |
. . . . 5
 Slot    
      |
53 | 52 | simpri 113 |
. . . 4
     |
54 | 53 | a1i 9 |
. . 3
             |
55 | | setsex 12508 |
. . 3
    sSet  Scalar    ↾s    sSet      
                  sSet  Scalar   
↾s    sSet      
      sSet      
        |
56 | 51, 54, 49, 55 | syl3anc 1248 |
. 2
          sSet  Scalar    ↾s    sSet      
      sSet      
        |
57 | 24, 30, 34, 56 | fvmptd 5610 |
1
        subringAlg         sSet  Scalar    ↾s    sSet      
      sSet      
        |