ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval Unicode version

Theorem sraval 14395
Description: Lemma for srabaseg 14397 through sravscag 14401. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)

Proof of Theorem sraval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
21adantr 276 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  _V )
3 df-sra 14393 . . . 4  |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
) )
4 fveq2 5626 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
54pweqd 3654 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
6 id 19 . . . . . . . 8  |-  ( w  =  W  ->  w  =  W )
7 oveq1 6007 . . . . . . . . 9  |-  ( w  =  W  ->  (
ws  s )  =  ( Ws  s ) )
87opeq2d 3863 . . . . . . . 8  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  s ) >. )
96, 8oveq12d 6018 . . . . . . 7  |-  ( w  =  W  ->  (
w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) )
10 fveq2 5626 . . . . . . . 8  |-  ( w  =  W  ->  ( .r `  w )  =  ( .r `  W
) )
1110opeq2d 3863 . . . . . . 7  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( .r `  w
) >.  =  <. ( .s `  ndx ) ,  ( .r `  W
) >. )
129, 11oveq12d 6018 . . . . . 6  |-  ( w  =  W  ->  (
( w sSet  <. (Scalar ` 
ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) )
1310opeq2d 3863 . . . . . 6  |-  ( w  =  W  ->  <. ( .i `  ndx ) ,  ( .r `  w
) >.  =  <. ( .i `  ndx ) ,  ( .r `  W
) >. )
1412, 13oveq12d 6018 . . . . 5  |-  ( w  =  W  ->  (
( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
155, 14mpteq12dv 4165 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
)  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
16 elex 2811 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
17 basfn 13086 . . . . . . 7  |-  Base  Fn  _V
18 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1918funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2017, 19mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
2120pwexd 4264 . . . . 5  |-  ( W  e.  _V  ->  ~P ( Base `  W )  e.  _V )
2221mptexd 5865 . . . 4  |-  ( W  e.  _V  ->  (
s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)  e.  _V )
233, 15, 16, 22fvmptd3 5727 . . 3  |-  ( W  e.  _V  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
242, 23syl 14 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
25 simpr 110 . . . . . . 7  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  s  =  S )
2625oveq2d 6016 . . . . . 6  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( Ws  s )  =  ( Ws  S ) )
2726opeq2d 3863 . . . . 5  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  -> 
<. (Scalar `  ndx ) ,  ( Ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )
2827oveq2d 6016 . . . 4  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)
2928oveq1d 6015 . . 3  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
3029oveq1d 6015 . 2  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) sSet  <. ( .i `  ndx ) ,  ( .r
`  W ) >.
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
31 simpr 110 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  C_  ( Base `  W
) )
32 elpw2g 4239 . . . 4  |-  ( (
Base `  W )  e.  _V  ->  ( S  e.  ~P ( Base `  W
)  <->  S  C_  ( Base `  W ) ) )
332, 20, 323syl 17 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( S  e.  ~P ( Base `  W )  <->  S  C_  ( Base `  W ) ) )
3431, 33mpbird 167 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  ~P ( Base `  W
) )
35 simpl 109 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  V )
36 scaslid 13181 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3736simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
3837a1i 9 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (Scalar ` 
ndx )  e.  NN )
3934elexd 2813 . . . . . 6  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  _V )
40 ressex 13093 . . . . . 6  |-  ( ( W  e.  V  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
4139, 40syldan 282 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( Ws  S )  e.  _V )
42 setsex 13059 . . . . 5  |-  ( ( W  e.  V  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
4335, 38, 41, 42syl3anc 1271 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )  e.  _V )
44 vscaslid 13191 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
4544simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
4645a1i 9 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .s `  ndx )  e.  NN )
47 mulrslid 13160 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4847slotex 13054 . . . . 5  |-  ( W  e.  V  ->  ( .r `  W )  e. 
_V )
4948adantr 276 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .r `  W )  e. 
_V )
50 setsex 13059 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5143, 46, 49, 50syl3anc 1271 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. )  e.  _V )
52 ipslid 13199 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
5352simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
5453a1i 9 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .i `  ndx )  e.  NN )
55 setsex 13059 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .i
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5651, 54, 49, 55syl3anc 1271 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5724, 30, 34, 56fvmptd 5714 1  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   <.cop 3669    |-> cmpt 4144    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   NNcn 9106   ndxcnx 13024   sSet csts 13025  Slot cslot 13026   Basecbs 13027   ↾s cress 13028   .rcmulr 13106  Scalarcsca 13108   .scvsca 13109   .icip 13110  subringAlg csra 14391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-sra 14393
This theorem is referenced by:  sralemg  14396  srascag  14400  sravscag  14401  sraipg  14402  sraex  14404
  Copyright terms: Public domain W3C validator