ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval Unicode version

Theorem sraval 13993
Description: Lemma for srabaseg 13995 through sravscag 13999. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)

Proof of Theorem sraval
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
21adantr 276 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  _V )
3 df-sra 13991 . . . 4  |- subringAlg  =  ( w  e.  _V  |->  ( s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
) )
4 fveq2 5558 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
54pweqd 3610 . . . . 5  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P ( Base `  W
) )
6 id 19 . . . . . . . 8  |-  ( w  =  W  ->  w  =  W )
7 oveq1 5929 . . . . . . . . 9  |-  ( w  =  W  ->  (
ws  s )  =  ( Ws  s ) )
87opeq2d 3815 . . . . . . . 8  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  s ) >. )
96, 8oveq12d 5940 . . . . . . 7  |-  ( w  =  W  ->  (
w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) )
10 fveq2 5558 . . . . . . . 8  |-  ( w  =  W  ->  ( .r `  w )  =  ( .r `  W
) )
1110opeq2d 3815 . . . . . . 7  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( .r `  w
) >.  =  <. ( .s `  ndx ) ,  ( .r `  W
) >. )
129, 11oveq12d 5940 . . . . . 6  |-  ( w  =  W  ->  (
( w sSet  <. (Scalar ` 
ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) )
1310opeq2d 3815 . . . . . 6  |-  ( w  =  W  ->  <. ( .i `  ndx ) ,  ( .r `  w
) >.  =  <. ( .i `  ndx ) ,  ( .r `  W
) >. )
1412, 13oveq12d 5940 . . . . 5  |-  ( w  =  W  ->  (
( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) )
155, 14mpteq12dv 4115 . . . 4  |-  ( w  =  W  ->  (
s  e.  ~P ( Base `  w )  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  w ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  w ) >. )
)  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
16 elex 2774 . . . 4  |-  ( W  e.  _V  ->  W  e.  _V )
17 basfn 12736 . . . . . . 7  |-  Base  Fn  _V
18 funfvex 5575 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
1918funfni 5358 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
2017, 19mpan 424 . . . . . 6  |-  ( W  e.  _V  ->  ( Base `  W )  e. 
_V )
2120pwexd 4214 . . . . 5  |-  ( W  e.  _V  ->  ~P ( Base `  W )  e.  _V )
2221mptexd 5789 . . . 4  |-  ( W  e.  _V  ->  (
s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)  e.  _V )
233, 15, 16, 22fvmptd3 5655 . . 3  |-  ( W  e.  _V  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
242, 23syl 14 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (subringAlg  `  W )  =  ( s  e.  ~P ( Base `  W )  |->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
25 simpr 110 . . . . . . 7  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  s  =  S )
2625oveq2d 5938 . . . . . 6  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( Ws  s )  =  ( Ws  S ) )
2726opeq2d 3815 . . . . 5  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  -> 
<. (Scalar `  ndx ) ,  ( Ws  s ) >.  =  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )
2827oveq2d 5938 . . . 4  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  s ) >. )  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)
2928oveq1d 5937 . . 3  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
3029oveq1d 5937 . 2  |-  ( ( ( W  e.  V  /\  S  C_  ( Base `  W ) )  /\  s  =  S )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  s ) >.
) sSet  <. ( .s `  ndx ) ,  ( .r
`  W ) >.
) sSet  <. ( .i `  ndx ) ,  ( .r
`  W ) >.
)  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
31 simpr 110 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  C_  ( Base `  W
) )
32 elpw2g 4189 . . . 4  |-  ( (
Base `  W )  e.  _V  ->  ( S  e.  ~P ( Base `  W
)  <->  S  C_  ( Base `  W ) ) )
332, 20, 323syl 17 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( S  e.  ~P ( Base `  W )  <->  S  C_  ( Base `  W ) ) )
3431, 33mpbird 167 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  ~P ( Base `  W
) )
35 simpl 109 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  W  e.  V )
36 scaslid 12830 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
3736simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
3837a1i 9 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (Scalar ` 
ndx )  e.  NN )
3934elexd 2776 . . . . . 6  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  S  e.  _V )
40 ressex 12743 . . . . . 6  |-  ( ( W  e.  V  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
4139, 40syldan 282 . . . . 5  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( Ws  S )  e.  _V )
42 setsex 12710 . . . . 5  |-  ( ( W  e.  V  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
4335, 38, 41, 42syl3anc 1249 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. )  e.  _V )
44 vscaslid 12840 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
4544simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
4645a1i 9 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .s `  ndx )  e.  NN )
47 mulrslid 12809 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4847slotex 12705 . . . . 5  |-  ( W  e.  V  ->  ( .r `  W )  e. 
_V )
4948adantr 276 . . . 4  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .r `  W )  e. 
_V )
50 setsex 12710 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5143, 46, 49, 50syl3anc 1249 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. )  e.  _V )
52 ipslid 12848 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
5352simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
5453a1i 9 . . 3  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  ( .i `  ndx )  e.  NN )
55 setsex 12710 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .i
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5651, 54, 49, 55syl3anc 1249 . 2  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
5724, 30, 34, 56fvmptd 5642 1  |-  ( ( W  e.  V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   <.cop 3625    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   NNcn 8990   ndxcnx 12675   sSet csts 12676  Slot cslot 12677   Basecbs 12678   ↾s cress 12679   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   .icip 12760  subringAlg csra 13989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-sra 13991
This theorem is referenced by:  sralemg  13994  srascag  13998  sravscag  13999  sraipg  14000  sraex  14002
  Copyright terms: Public domain W3C validator