ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng Unicode version

Theorem issubrng 13543
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
issubrng  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )

Proof of Theorem issubrng
Dummy variables  w  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 13542 . . 3  |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng }
)
21mptrcl 5618 . 2  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 simp1 999 . 2  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  ->  R  e. Rng )
4 df-subrng 13542 . . . . 5  |- SubRng  =  ( r  e. Rng  |->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }
)
5 fveq2 5534 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
65pweqd 3595 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P ( Base `  R
) )
7 oveq1 5902 . . . . . . 7  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
87eleq1d 2258 . . . . . 6  |-  ( r  =  R  ->  (
( rs  s )  e. Rng  <->  ( Rs  s )  e. Rng )
)
96, 8rabeqbidv 2747 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
10 id 19 . . . . 5  |-  ( R  e. Rng  ->  R  e. Rng )
11 basfn 12569 . . . . . . . 8  |-  Base  Fn  _V
12 elex 2763 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  _V )
13 funfvex 5551 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5335 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1511, 12, 14sylancr 414 . . . . . . 7  |-  ( R  e. Rng  ->  ( Base `  R
)  e.  _V )
1615pwexd 4199 . . . . . 6  |-  ( R  e. Rng  ->  ~P ( Base `  R )  e.  _V )
17 rabexg 4161 . . . . . 6  |-  ( ~P ( Base `  R
)  e.  _V  ->  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  e.  _V )
1816, 17syl 14 . . . . 5  |-  ( R  e. Rng  ->  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  e.  _V )
194, 9, 10, 18fvmptd3 5629 . . . 4  |-  ( R  e. Rng  ->  (SubRng `  R )  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
2019eleq2d 2259 . . 3  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng } ) )
21 oveq2 5903 . . . . . 6  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2221eleq1d 2258 . . . . 5  |-  ( s  =  A  ->  (
( Rs  s )  e. Rng  <->  ( Rs  A )  e. Rng )
)
2322elrab 2908 . . . 4  |-  ( A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  <->  ( A  e.  ~P ( Base `  R
)  /\  ( Rs  A
)  e. Rng ) )
24 issubrng.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
2524eqcomi 2193 . . . . . . . 8  |-  ( Base `  R )  =  B
2625sseq2i 3197 . . . . . . 7  |-  ( A 
C_  ( Base `  R
)  <->  A  C_  B )
2726anbi2i 457 . . . . . 6  |-  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  B ) )
28 ibar 301 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
2927, 28bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
30 ancom 266 . . . . . 6  |-  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) ) )
31 elpw2g 4174 . . . . . . . 8  |-  ( (
Base `  R )  e.  _V  ->  ( A  e.  ~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3215, 31syl 14 . . . . . . 7  |-  ( R  e. Rng  ->  ( A  e. 
~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3332anbi2d 464 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) )  <-> 
( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R ) ) ) )
3430, 33bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) ) ) )
35 3anass 984 . . . . . 6  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3635a1i 9 . . . . 5  |-  ( R  e. Rng  ->  ( ( R  e. Rng  /\  ( Rs  A
)  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
3729, 34, 363bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3823, 37bitrid 192 . . 3  |-  ( R  e. Rng  ->  ( A  e. 
{ s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B
) ) )
3920, 38bitrd 188 . 2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
402, 3, 39pm5.21nii 705 1  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   {crab 2472   _Vcvv 2752    C_ wss 3144   ~Pcpw 3590    Fn wfn 5230   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5898  df-inn 8949  df-ndx 12514  df-slot 12515  df-base 12517  df-subrng 13542
This theorem is referenced by:  subrngss  13544  subrngid  13545  subrngrng  13546  subrngrcl  13547  issubrng2  13554  subsubrng  13558  subrngpropd  13560  rng2idlsubrng  13829
  Copyright terms: Public domain W3C validator