ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng Unicode version

Theorem issubrng 13961
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
issubrng  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )

Proof of Theorem issubrng
Dummy variables  w  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 13960 . . 3  |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng }
)
21mptrcl 5662 . 2  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 simp1 1000 . 2  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  ->  R  e. Rng )
4 df-subrng 13960 . . . . 5  |- SubRng  =  ( r  e. Rng  |->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }
)
5 fveq2 5576 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
65pweqd 3621 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P ( Base `  R
) )
7 oveq1 5951 . . . . . . 7  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
87eleq1d 2274 . . . . . 6  |-  ( r  =  R  ->  (
( rs  s )  e. Rng  <->  ( Rs  s )  e. Rng )
)
96, 8rabeqbidv 2767 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
10 id 19 . . . . 5  |-  ( R  e. Rng  ->  R  e. Rng )
11 basfn 12890 . . . . . . . 8  |-  Base  Fn  _V
12 elex 2783 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  _V )
13 funfvex 5593 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5376 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1511, 12, 14sylancr 414 . . . . . . 7  |-  ( R  e. Rng  ->  ( Base `  R
)  e.  _V )
1615pwexd 4225 . . . . . 6  |-  ( R  e. Rng  ->  ~P ( Base `  R )  e.  _V )
17 rabexg 4187 . . . . . 6  |-  ( ~P ( Base `  R
)  e.  _V  ->  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  e.  _V )
1816, 17syl 14 . . . . 5  |-  ( R  e. Rng  ->  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  e.  _V )
194, 9, 10, 18fvmptd3 5673 . . . 4  |-  ( R  e. Rng  ->  (SubRng `  R )  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
2019eleq2d 2275 . . 3  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng } ) )
21 oveq2 5952 . . . . . 6  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2221eleq1d 2274 . . . . 5  |-  ( s  =  A  ->  (
( Rs  s )  e. Rng  <->  ( Rs  A )  e. Rng )
)
2322elrab 2929 . . . 4  |-  ( A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  <->  ( A  e.  ~P ( Base `  R
)  /\  ( Rs  A
)  e. Rng ) )
24 issubrng.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
2524eqcomi 2209 . . . . . . . 8  |-  ( Base `  R )  =  B
2625sseq2i 3220 . . . . . . 7  |-  ( A 
C_  ( Base `  R
)  <->  A  C_  B )
2726anbi2i 457 . . . . . 6  |-  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  B ) )
28 ibar 301 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
2927, 28bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
30 ancom 266 . . . . . 6  |-  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) ) )
31 elpw2g 4200 . . . . . . . 8  |-  ( (
Base `  R )  e.  _V  ->  ( A  e.  ~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3215, 31syl 14 . . . . . . 7  |-  ( R  e. Rng  ->  ( A  e. 
~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3332anbi2d 464 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) )  <-> 
( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R ) ) ) )
3430, 33bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) ) ) )
35 3anass 985 . . . . . 6  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3635a1i 9 . . . . 5  |-  ( R  e. Rng  ->  ( ( R  e. Rng  /\  ( Rs  A
)  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
3729, 34, 363bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3823, 37bitrid 192 . . 3  |-  ( R  e. Rng  ->  ( A  e. 
{ s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B
) ) )
3920, 38bitrd 188 . 2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
402, 3, 39pm5.21nii 706 1  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833  Rngcrng 13694  SubRngcsubrng 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-subrng 13960
This theorem is referenced by:  subrngss  13962  subrngid  13963  subrngrng  13964  subrngrcl  13965  issubrng2  13972  subsubrng  13976  subrngpropd  13978  rng2idlsubrng  14279
  Copyright terms: Public domain W3C validator