ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng Unicode version

Theorem issubrng 13755
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
Hypothesis
Ref Expression
issubrng.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
issubrng  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )

Proof of Theorem issubrng
Dummy variables  w  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrng 13754 . . 3  |- SubRng  =  ( w  e. Rng  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. Rng }
)
21mptrcl 5644 . 2  |-  ( A  e.  (SubRng `  R
)  ->  R  e. Rng )
3 simp1 999 . 2  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  ->  R  e. Rng )
4 df-subrng 13754 . . . . 5  |- SubRng  =  ( r  e. Rng  |->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }
)
5 fveq2 5558 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
65pweqd 3610 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P ( Base `  R
) )
7 oveq1 5929 . . . . . . 7  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
87eleq1d 2265 . . . . . 6  |-  ( r  =  R  ->  (
( rs  s )  e. Rng  <->  ( Rs  s )  e. Rng )
)
96, 8rabeqbidv 2758 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( rs  s )  e. Rng }  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
10 id 19 . . . . 5  |-  ( R  e. Rng  ->  R  e. Rng )
11 basfn 12736 . . . . . . . 8  |-  Base  Fn  _V
12 elex 2774 . . . . . . . 8  |-  ( R  e. Rng  ->  R  e.  _V )
13 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1413funfni 5358 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1511, 12, 14sylancr 414 . . . . . . 7  |-  ( R  e. Rng  ->  ( Base `  R
)  e.  _V )
1615pwexd 4214 . . . . . 6  |-  ( R  e. Rng  ->  ~P ( Base `  R )  e.  _V )
17 rabexg 4176 . . . . . 6  |-  ( ~P ( Base `  R
)  e.  _V  ->  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  e.  _V )
1816, 17syl 14 . . . . 5  |-  ( R  e. Rng  ->  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  e.  _V )
194, 9, 10, 18fvmptd3 5655 . . . 4  |-  ( R  e. Rng  ->  (SubRng `  R )  =  { s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng } )
2019eleq2d 2266 . . 3  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng } ) )
21 oveq2 5930 . . . . . 6  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2221eleq1d 2265 . . . . 5  |-  ( s  =  A  ->  (
( Rs  s )  e. Rng  <->  ( Rs  A )  e. Rng )
)
2322elrab 2920 . . . 4  |-  ( A  e.  { s  e. 
~P ( Base `  R
)  |  ( Rs  s )  e. Rng }  <->  ( A  e.  ~P ( Base `  R
)  /\  ( Rs  A
)  e. Rng ) )
24 issubrng.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
2524eqcomi 2200 . . . . . . . 8  |-  ( Base `  R )  =  B
2625sseq2i 3210 . . . . . . 7  |-  ( A 
C_  ( Base `  R
)  <->  A  C_  B )
2726anbi2i 457 . . . . . 6  |-  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  B ) )
28 ibar 301 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
2927, 28bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
30 ancom 266 . . . . . 6  |-  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) ) )
31 elpw2g 4189 . . . . . . . 8  |-  ( (
Base `  R )  e.  _V  ->  ( A  e.  ~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3215, 31syl 14 . . . . . . 7  |-  ( R  e. Rng  ->  ( A  e. 
~P ( Base `  R
)  <->  A  C_  ( Base `  R ) ) )
3332anbi2d 464 . . . . . 6  |-  ( R  e. Rng  ->  ( ( ( Rs  A )  e. Rng  /\  A  e.  ~P ( Base `  R ) )  <-> 
( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R ) ) ) )
3430, 33bitrid 192 . . . . 5  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( ( Rs  A )  e. Rng  /\  A  C_  ( Base `  R
) ) ) )
35 3anass 984 . . . . . 6  |-  ( ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3635a1i 9 . . . . 5  |-  ( R  e. Rng  ->  ( ( R  e. Rng  /\  ( Rs  A
)  e. Rng  /\  A  C_  B )  <->  ( R  e. Rng  /\  ( ( Rs  A )  e. Rng  /\  A  C_  B ) ) ) )
3729, 34, 363bitr4d 220 . . . 4  |-  ( R  e. Rng  ->  ( ( A  e.  ~P ( Base `  R )  /\  ( Rs  A )  e. Rng )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
3823, 37bitrid 192 . . 3  |-  ( R  e. Rng  ->  ( A  e. 
{ s  e.  ~P ( Base `  R )  |  ( Rs  s )  e. Rng }  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B
) ) )
3920, 38bitrd 188 . 2  |-  ( R  e. Rng  ->  ( A  e.  (SubRng `  R )  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) ) )
402, 3, 39pm5.21nii 705 1  |-  ( A  e.  (SubRng `  R
)  <->  ( R  e. Rng  /\  ( Rs  A )  e. Rng  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679  Rngcrng 13488  SubRngcsubrng 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-subrng 13754
This theorem is referenced by:  subrngss  13756  subrngid  13757  subrngrng  13758  subrngrcl  13759  issubrng2  13766  subsubrng  13770  subrngpropd  13772  rng2idlsubrng  14073
  Copyright terms: Public domain W3C validator